

water affairs

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

Project No. WP 10537

Determination of Resource Quality Objectives for the Olifants-Doorn Water Management Area

> Report No. 3 RQO Determination Report

> > Final February 2014

Prepared by:

UMVOTO AFRICA (PTY) LTD

In association with

SOUTHERN WATERS ECOLOGICAL RESEARCH & CONSULTING CC

Department of Water Affairs **Directorate: Reserve Requirements**

DETERMINATION OF RESOURCE QUALITY OBJECTIVES FOR THE OLIFANTS DOORN WATER MANAGEMENT AREA

Report No. 3 - RQO Determination Report

APPROVAL

TITLE:

Determination of Resource Quality Objectives for the Olifants Doorn Water Management Area; **Final Report**

DWA REPORT NO. :

CONSULTANTS

Umvoto Africa (Pty) Ltd in association with : Southern Waters Ecological Research and Consulting cc

AUTHORS Dr Kornelius Riemann : Dr Alison Joubert Dr Cate Brown

REPORT STATUS: Final – Updated

DATE : February 2014

STUDY TEAM: Approved for Umvoto

E.R HAY	
Project Director	

..... **K RIEMANN Project Leader**

DEPARTMENT OF WATER AFFAIRS Directorate: RDM Compliance Approved for Department of Water Affairs

	•••••••••••••••••••••••••••••••••••••••
S MANAMELA	NN
Project Manager	D: RDM Compliance

Reference

This report is to be referred to in bibliographies as:

Department of Water Affairs, South Africa. 2013. Determination of Resource Quality Objectives for the Olifants Doorn Water Management Area – Report No. 3 - RQO Determination Report. Prepared by Umvoto Africa (Pty) Ltd in association with Southern Water Ecological Research and Consulting cc (Authors: K Riemann. A Joubert, C. Brown) on behalf of the Directorate : RDM Compliance. DWA Report No.

Authors' Contributions

Dr Kornelius Riemann	Study Leader, Groundwater RQOs
Dr Alison Joubert	Deputy Study Leader, Surface water RQOs
Dr Cate Brown	Advisor, Surface water RQOs
Ms Rowena Hay	Advisor
Mr Dylan Blake	Characterisation of groundwater
Dr Bruce Paxton	Fish RQOs
Mr Mark Rountree	Wetland RQOs
Mr Masibulele Fubesi	Groundwater RQOs
Mr Sinawo Jack	Groundwater RQOs

Table of Contents

Table of Contents i				
List of Table	List of Tablesxiv			
List of Figure	List of Figuresxviii			
List of Boxes	\$	xx		
List of Acron	yms and Abbreviations	xxi		
	, uction and Preparation			
	'. .tion			
1.1	Background to the study			
1.2	Terms of Reference			
1.3	Purpose of this report			
	h adopted for RQOs			
2.1	Seven Step Process			
2.2	Rivers			
2.2.1	Incorporation of available EWR data at a finer spatial scale			
2.2.2	Addition of nodes to account for all quaternaries			
2.2.3	Verification of Classification outputs			
2.2.4	Floods (over and above node Reserve allocation)			
2.2.5	Focus on minimum dry season lowflows			
2.2.6	Calculation of incremental inflow and FEPAs	27		
2.2.7	E10K (R33) – Reserve allocations	28		
2.2.8	Estuary flow requirements			
2.2.9	Temporal scale of the "balance sheet" tool	29		
2.2.10	Balancing the "balance sheet" tool	29		
2.2.11	Management Class	29		
2.2.12	.tab, .rul and .mrv files			
2.2.13	Monitoring of RQOs	30		
2.3	Wetlands			
2.3.1	Prioirity wetland clusters			
2.4	Groundwater	31		
2.5	Integrated Units of Analysis	33		
3 Outcom	e of the Classification process	34		
4 Updated	configuration	36		
4.1	Overarching implications of the recommended configuration	36		
4.1.1	Olifants-Doring Basin	36		
4.1.2	Sandveld	36		
5 Hydrolo	gical RQOs - Standard Ecological Reserve data for updated rec	ommended		
configu	ation	38		
	tisation and Resource Unit evaluation			
6 Prioritis	ation of Resource Units	40		
6.1	Adjustments to the Resource Unit Prioritisation Tools	40		
6.1.1	Criteria	40		
6.1.1.	1 Rivers and estuaries	40		
6.1.1.2	2 Groundwater	43		
6.2	Prioritisation	44		

7	Resourc	e Unit Evaluation	47
7	7.1	RQO-related information available for RUs	47
7	7.2	Resource unit evaluation tool	47
	7.2.1	Rivers	
	7.2.2	Groundwater	48
Par	rt III: Reso	ource Quality Objectives for Priority RUs	50
8		y of priority RUs	
8	3.1	Summary of key hydrological and narrative RQOs for priority RUs	
9	E33H (E) Resource quality objectives	
ç	9.1	Updated resource classification	
).2	Olifants River Estuary in E33H	
-	9.2.1	Hydrology	
	9.2.1.		
	9.2.1.		
	9.2.2	Water quality	66
	9.2.2.		
	9.2.2.	2 Numerical	66
	9.2.3	Macrophytes	67
	9.2.3.	1 Narrative	67
	9.2.3.	2 Numerical	67
	9.2.4	Microalgae	67
	9.2.4.	1 Narrative	67
	9.2.4.	2 Numerical	67
	9.2.5	Invertebrates	68
	9.2.5.	1 Narrative	68
	9.2.5.	2 Numerical	68
	9.2.6	Fish	
	9.2.6.		
	9.2.6.		
	9.2.7	Birds	
	9.2.7.		
	9.2.7.		
	9.3	Groundwater	
	9.4	Wetlands	
10	E10K (R	13) Resource quality objectives	
1	0.1	Updated resource classification	71
1	0.2	Olifants River in E10K	71
	10.2.1	Hydrology	72
	10.2.1		
	10.2.1		
	10.2.2	Water quality	
	10.2.2		
	10.2.2		
	10.2.3	Geomorphology	
	10.2.3		
	10.2.3		
	10.2.4	Riparian vegetation	
	10.2.4		
	10.2.4	I.2 Numerical	75

10.2.5	Macroinvertebrates	75
10.2.5	5.1 Narrative	75
10.2.5	5.2 Numerical	75
10.2.6	Fish	76
10.2.6	S.1 Narrative	76
10.2.6	3.2 Numerical	76
10.3	Tributaries	77
10.4	Groundwater	77
10.5	Wetlands	77
11 E10J (R	23) Resource quality objectives	78
11.1	Updated resource classification	78
11.2	Olifants River in E10J	78
11.2.1	Hydrology	78
11.2.1	.1 Narrative	78
11.2.1	.2 Numerical	79
11.2.2	Water quality	80
11.2.2	.1 Narrative	80
11.2.2	.2 Numerical	80
11.2.3	Geomorphology	80
11.2.4	Riparian vegetation	80
11.2.5	Macroinvertebrates	80
11.2.6	Fish	80
11.2.6	6.1 Narrative	81
11.2.6	5.2 Numerical	81
11.3	Tributaries	
11.3.1	Hydrology	81
11.3.1	.1 Narrative	81
11.3.1		
11.4	Groundwater	82
11.5	Wetlands	82
12 E10H (R	24) Resource quality objectives	83
12.1	Updated resource classification	83
12.2	Jan Dissels River in E10H	83
12.2.1	Hydrology	84
12.2.1	.1 Narrative	84
12.2.1	.2 Numerical	84
12.2.2	Water quality	85
12.2.2	.1 Narrative	85
12.2.2	.2 Numerical	85
12.2.3	Geomorphology	86
12.2.3	8.1 Narrative	86
12.2.3	8.2 Numerical	86
12.2.4	Riparian vegetation	86
12.2.4	l.1 Narrative	86
12.2.4	l.2 Numerical	86
12.2.5	Macroinvertebrates	
12.2.5		
12.2.5		
12.2.6	Fish	87

	12.2.6	.1	Narrative	. 88
12.2.6.2		.2	Numerical	. 88
1:	2.3	Tribu	taries	. 88
	12.3.1	Hydro	ology	. 88
	12.3.1	.1	Narrative	. 88
	12.3.1	.2	Numerical	. 88
1:	2.4	Grou	ndwater	. 89
1:	2.5	Wetla	ands	. 89
13	E10G (R	34) Re	esource quality objectives	. 90
1:	3.1	Upda	ted resource classification	. 90
1:	3.2	Olifar	nts River in E10G	. 90
1:	3.3	Tribu	taries	. 90
	13.3.1	Kliph	uis River	. 90
	13.3.2	Rond	legat River	. 90
	13.3.2	.1	Hydrology	. 91
	13.3.2	.2	Water quality	. 93
	13.3.2	.3	Geomorphology	. 94
	13.3.2		Riparian vegetation	
	13.3.2		Macroinvertebrates	
	13.3.2	.6	Fish	. 96
1:	3.4	Grou	ndwater	. 96
1:	3.5	Wetla	ands	. 97
14	E10F and	d E10	E (R33) Resource quality objectives	. 98
14	4.1	Upda	ted resource classification	. 98
14	4.2	Olifar	nts River in E10F (and E10E)	. 98
	14.2.1	Hydro	ology	100
	14.2.1	.1	Narrative	100
	14.2.1	.2	Numerical	100
	14.2.2	Wate	r quality	101
	14.2.2	.1	Narrative	101
	14.2.2	.2	Numerical	101
	14.2.3	Geon	norphology	101
	14.2.3		Narrative	
	14.2.3		Numerical	
		•	ian vegetation	
	14.2.4		Narrative	
	14.2.4		Numerical	
	14.2.5		oinvertebrates	
	14.2.5		Narrative	
	14.2.5		Numerical	
	14.2.6 <i>14.2.6</i>		Norrotivo	
	14.2.0		Narrative	
1	1 <i>4.2.</i> 0 4.3		Numericaltaries	
14	4.3 14.3.1			
	14.3.1	•	ology Narrative	
	14.3.1		Narrauve Numerical	
	14.3.2		Numenca	
	14.3.2		Narrative	
	17.5.2	. ,		,00

		4400	~	N house where I	405
		14.3.2.		Numerical	
	4.4			ndwater - Overview	
1	4.5			um Aquifer	
				r quantity	
		14.5.1.	-	Narrative	
		14.5.1.		Numerical	
				r quality	
		14.5.2.		Narrative	
		14.5.2.		Numerical	
1	4.6			Aquifers	
				r quantity	
		14.6.1.		Narrative	
		14.6.1.		Numerical	
	14.	6.2		r quality	
		14.6.2.		Narrative	
		14.6.2.		Numerical	
1	4.7		Wetla	ands	109
15	E1(0D (R4	40), Ε΄	10C (R42) and E10B (R44) Resource quality objectives	110
1	5.1		Upda	ted resource classification	110
1	5.2		Olifar	nts River in E10D, E10C and E10B	110
	15.			blogy	
		15.2.1.	•	Narrative	
		15.2.1.		Numerical	
		-		r quality	
		15.2.2.		Narrative	
		15.2.2.		Numerical	
		-		norphology	
				ian vegetation	
	-		•	oinvertebrates	
		15.2.6.	-	Narrative	
					111
1	5.3		Tribut	taries	112
				ology	
	-	15.3.1.		Narrative	
		15.3.1.		Numerical	
		15.3.2.	-	Narrative	
		15.3.2.		Numerical	
1	5.4			ndwater – Overview	
	5.5			um Aquifer	
				r quantity	
		.5. i 15.5.1.		Narrative	
		15.5.1.		Numerical	
				r quality	
		.ə.z 15.5.2.		Narrative	
		15.5.2. 15.5.2.		Numerical	
4	5.6			Aquifers	
I				•	
	10.	0.1	vvale	r quantity	110

15.0.4	d Normativa	11E
15.6.1		
15.6.1		
15.6.2	Water quality	
15.6.2		
15.6.2		
15.7	Wetlands	
16 E24M (R	14) Resource quality objectives	
16.1	Updated resource classification	117
16.2	Doring River in E24M	117
16.2.1	Hydrology	120
16.2.1	.1 Narrative	120
16.2.1	.2 Numerical	120
16.2.2	Water quality	120
16.2.2	2.1 Narrative	120
16.2.2	2.2 Numerical	121
16.2.3	Geomorphology	121
16.2.3	8.1 Narrative	121
16.2.3	8.2 Numerical	121
16.2.4	Riparian vegetation	122
16.2.4	P.1 Narrative	122
16.2.4	I.2 Numerical	122
16.2.5	Macroinvertebrates	
16.2.5		
16.2.5	5.2 Numerical	122
16.2.6	Fish	
16.2.6		
16.2.6		
16.3	Tributaries	
16.3.1	Hydrology	
16.3.1		
16.3.1		
16.4	Groundwater	
16.5	Wetlands	
17 E40C (R	11) and E40D (R17) Resource quality objectives	125
17.1	Updated resource classification	125
17.2	Oorlogskloof River in E40C and Koebee River in E40D	125
17.2.1	Hydrology	
17.2.1	.1 Narrative	126
17.2.1	.2 Numerical	126
17.2.2	Water quality	127
17.2.2	2.1 Narrative	127
17.2.2	2.2 Numerical	127
17.2.3	Geomorphology	127
17.2.4	Riparian vegetation	127
17.2.5	Macroinvertebrates	127
17.2.6	Fish	127
17.2.6	6.1 Narrative	127
17.2.6	0.2 Numerical	127
17.3	Tributaries	128

47.0.4		400
17.3.1	Hydrology	
17.3.1		
17.3.1		
17.4	Groundwater	
17.5	Wetlands in E40C and E32E (the "Nieuwoudtville Wetlands")	
17.5.1	Physical attributes	
17.5.1		
17.5.1	1.2 Numerical	. 130
18 E33F (Q	1) Resource quality objectives	. 131
18.1	Updated resource classification	. 131
18.2	Troe-Troe River in E33F	. 131
18.2.1	Hydrology	. 131
18.2.1		
18.2.1	1.2 Numerical	. 131
18.2.2	Water quality	
18.2.3	Geomorphology	
18.2.4	Riparian vegetation	
18.2.5	Macroinvertebrates	
18.2.6	Fish	
18.3	Tributaries	
18.4	Groundwater	
-	Water quantity	
18.4.1		
18.4.1		
-		
18.4.2 <i>18.4.</i> 2	Water quality 2.1 Narrative	
18.4.2		
18.5		
-	1) and E21J (R38), E21K and E21L (R37) Resource quality objectives	
19.1	Updated resource classification	
19.2	Groot River in E21J and E21L	. 135
19.2.1	Hydrology	. 137
19.2.1	1.1 Narrative	. 137
19.2.1	1.2 Numerical	. 137
19.2.2	Water quality	. 137
19.2.2	2.1 Narrative	. 137
19.2.2	2.2 Numerical	. 138
19.2.3	Geomorphology	. 138
19.2.3	3.1 Narrative	. 138
19.2.3	3.2 Numerical	. 138
19.2.4	Riparian vegetation	. 139
19.2.4	1.1 Narrative	. 139
19.2.4	1.2 Numerical	. 139
19.2.5	Macroinvertebrates	. 139
19.2.5	5.1 Narrative	. 139
19.2.5	5.2 Numerical	. 139
19.2.6	Fish	. 140
19.2.6	6.1 Narrative	. 140
40.0.0		1.10
19.2.6	5.2 Numerical	. 140

19	9.3	Tributaries	141
19.3.1		Hydrology	141
19.3.1 10.2.1		.1 Narrative	141
	19.3.1.	2 Numerical	141
	19.3.2	Fish	142
	19.3.2.	.1 Narrative	142
	19.3.2.	2 Numerical	142
19	9.4	Groundwater	142
19	9.5	Wetlands	142
20	E21G (R4	41) Resource quality objectives	143
2	0.1	Updated resource classification	143
2	0.2	Leeu River in E21G	143
	20.2.1	Hydrology	143
	20.2.1.	1 Narrative	143
	20.2.1.	2 Numerical	143
	20.2.2	Water quality	143
	20.2.2	1 Narrative	143
	20.2.2	2 Numerical	143
	20.2.3	Geomorphology	144
		Riparian vegetation	
	20.2.5	Macroinvertebrates	144
	20.2.6	Fish	144
	20.2.6	1 Narrative	144
	20.2.6	2 Numerical	144
2	0.3	Tributaries	145
2	0.4	Groundwater – Overview	145
2		Alluvium and Bokkeveld Aquifer	
_		Water quantity	
	20.5.1		
	20.5.1		
		Water quality	
			147
	20.5.2		
2		TMG Aquifers	
_		Water quantity	
	20.0.1		
	20.6.1		
		Water quality	
	20.0.2		
	20.6.2		
2		Wetlands	
		27) Resource quality objectives	
	•		
		Updated resource classification	
2		Tankwa River in E23K	
		Hydrology	
	21.2.1.		
	21.2.1.		
		Water quality	
	21.2.3	Geomorphology	149

21.2.4	Riparian vegetation	149
21.2.5	Macroinvertebrates	
21.2.6	Fish	
21.3	Tributaries	149
21.4	Groundwater	
21.5	Wetlands	
	E33D, E33C (R8) Resource quality objectives	
22.1	Updated resource classification	
22.1	Hol River (b) in E33E	
22.2.1	Hydrology	
22.2.1		
22.2.		
22.2.2	Water quality	
22.2.2	Geomorphology	
22.2.4	Riparian vegetation	
22.2.5	Macroinvertebrates	
22.2.6	Fish	
22.3	Tributaries	
22.4	Groundwater	-
22.5	Wetlands	
	R3) Resource quality objectives	
23.1	Updated resource classification	
23.2	Doring River (b) in E32E	
23.2.1	Hydrology	
-	1.1 Narrative	
23.2.		
23.2.2 23.2.3	Water quality	
	Geomorphology	
23.2.4 23.2.5	Riparian vegetation Macroinvertebrates	
23.2.5	Fish	
23.2.0	Tributaries	
23.3	Groundwater	
23.5	Wetlands in E32E and E40C ("Nieuwoudtville Wetlands")	
-	R53) Resource quality objectives	
24.1	Updated resource classification	
24.2	Verlorevlei River in G30D	
24.2.1	Hydrology	
24.2.		
24.2.		
24.2.2	Water quality	
24.2.2		
24.2.2		
24.2.3	Geomorphology	
24.2.4	Riparian vegetation	
24.2.5	Macroinvertebrates	
24.2.6 24.2.0	Fish	
24.2.0	6.2 Numerical	156

2	24.3	Tributaries	157
2	24.4	Groundwater	157
	24.4.1	Water quantity	157
	24.4.1.	.1 Narrative	157
	24.4.1.	.2 Numerical	158
	24.4.2	Water quality	159
	24.4.2	.1 Narrative	159
	24.4.2	.2 Numerical	159
2	24.5	Wetlands	159
25	G30E (R	52) Resource quality objectives	160
2	25.1	Updated resource classification	160
2	25.2	Verlorevlei River in G30E	160
	25.2.1	Hydrology	160
	25.2.1		
	25.2.1	.2 Numerical	160
	25.2.2	Water quality	160
		Geomorphology	
		Macroinvertebrates	
	25.2.5	Fish	
	25.2.5	.1 Narrative	161
	25.2.5	.2 Numerical	161
2	25.3	Tributaries	
2	25.4	Groundwater	161
		Water quantity	
	25.4.1		
	25.4.1		
	-	Water quality	
	25.4.2		
	25.4.2		
		Water Level	
	25.4.3		
	25.4.3		163
2	25.5	Verlorenvlei	163
_		Hydrology and hydrodynamics	
	25.5.1		
	25.5.1		
		Water quality	
	25.5.2		
	25.5.2		
		Riparian vegetation	
	25.5.3		
	25.5.3		
		Macrophytes, micro- and macro-algae	
	25.5.4		
	25.5.4		
		Fish	
	25.5.5	-	-
	25.5.5		
		Amphibians	
	25.5.6	•	
	-		

	25.5.6.		Numerical	
			5	
	25.5.7.		Narrative	
	25.5.7.	.2	Numerical	167
26	G30F (R5	56) Re	esource quality objectives	169
2	6.1	Upda	ated resource classification	169
2	6.2	Lang	vlei River in G30F	169
	26.2.1	Hydro	ology	169
	26.2.1.	.1	Narrative	169
	26.2.1.	.2	Numerical	169
	26.2.2	Wate	er quality	169
			norphology	
	26.2.4	Macr	oinvertebrates	169
	26.2.5	Fish.		169
	26.2.5.	.1	Narrative	170
	26.2.5.	.2	Numerical	170
2	6.3	Tribu	itaries	170
2	6.4	Grou	ndwater	170
	26.4.1	Wate	er quantity	171
	26.4.1.		Narrative	
	26.4.1.		Numerical	
	26.4.2		er quality	
	26.4.2.		Narrative	
	26.4.2.		Numerical	
	26.4.3		er Level	
	26.4.3.		Narrative	
	26.4.3.	.2	Numerical	172
2	6.5		ands – Wadrif wetlands and Wadrif saltpan	
			ology and hydrodynamics	
	26.5.1.	•	Narrative	
	26.5.1.	.2	Numerical	173
	26.5.2	Wate	er quality	174
	26.5.3	Vege	etation	174
	26.5.4	Fish.		174
	26.5.4.	.1	Narrative	174
	26.5.4.	.2	Numerical	174
	26.5.5	Birds		174
	26.5.5.	.1	Narrative	175
	26.5.5.	.2	Numerical	175
	26.5.6	Wetla	and extent and vegetation	175
	26.5.6.	.1	Narrative	175
	26.5.6.	.2	Numerical	175
27	G30G (R	57) R	esource quality objectives	176
	-	-	ated resource classification	
		•	alsvlei River in G30G	
2			ology	
	27.2.1		Narrative	
	27.2.1.		Numerical	
			r quality	
	LI.L.L	• • ale		

	27.2.3	Geomorphology	176
	27.2.4	Macroinvertebrates	176
	27.2.5	Fish	176
2	27.3	Tributaries	177
2	27.4	Groundwater	177
	27.4.1	Water quantity	178
	27.4.1.	1 Narrative	178
	27.4.1.	2 Numerical	178
	27.4.2	Water quality	178
	27.4.2.	1 Narrative	178
	27.4.2.	2 Numerical	179
	27.4.3	Water Level	179
	27.4.3.	1 Narrative	179
	27.4.3.	2 Numerical	179
2	27.5	Wetlands - Jakkalsvlei Pan	179
	27.5.1	Narrative	179
	27.5.2	Numerical	179
28	G30H (Q	5) Resource quality objectives	181
2		Updated resource classification	181
		Sandlaagte River in G30H	
2		Hydrology	
2		Tributaries	
		Groundwater	
2		Wetlands – Upper Sandlaagte	
		Hydrology	
		Physical attributes	
	28.5.2.		
	28.5.2.		
Par		toring methods	
29	Monitori	ng methods for estuaries	184
2	29.1	Olifants Estuary	184
2	29.2	Verlorenvlei	185
2	29.3	Other Sandveld estuaries	185
30		ng methods	
		Rivers	
C		Hydrology	
		Water Quality	
		Geomorphology	
	30.1.3		
	30.1.3.		
		Riparian vegetation	
		Macroinvertebrates	
		Fish	
2		Wetlands	
		Groundwater	
Ċ		Monitoring network	
		Water use	
		Water level	
	30.3.3		IOQ

	30.3.4	Water Quality	189
Part	V: Confi	dence Assessment	190
31	Confide	nce Assessment	191
	31.1.1	Rivers and estuaries	191
	31.1.2	Groundwater	194
	31.1.3	Wetlands	196
	31.1.4	Expectations of DWA Regional Office	196
32	Reference	ces	197
Арр		Basic hydrological RQOs (Ecological Reserve requirements) for quaternaries	
Арр	endix B.(Groundwater Reserve requirements for quaternaries in the Olifants-Doorn W	
Арр	endix C.I		QOs 203

List of Tables

Table 3.1	Summary of river and estuary Categories (EC) and IUA Management Classes (MC) from the Classification project (DWA 2012a)
Table 3.2	Requirements for ecological condition for the Management Classes (Dollar et al. 2006) 35
Table 4.1.	Updated river and estuary ecological categories
Table 5.1	Example of the standard Ecological Reserve .tab file data provided (See Appendix A) 38
Table 6.1	Criteria, sub-criteria and ratings for the prioritisation of RUs (from DWA 2011)
Table 6.2	Criteria and sub-criteria for the prioritisation of RUs, considering the groundwater aspect (adapted from DWA 2011)
Table 6.3	Priority RUs selected for development of detailed RQOs
Table 7.1	RQOs listed in the Resource Unit Evaluation Tool (DWA 2011)
Table 7.2	Summary of RQOs selected for the river priority RUs
Table 7.3	Summary of the RQOs selected for groundwater priority RUs
Table 8.1	RUs selected as priorities for RQO specification. IUAs arranged from downstream to upstream. * = not possible to set detailed RQOs, na=not applicable (see Table 6.3). Showing RQOs provided for each, excluding hydrology
Table 8.2	Summary of key hydrological RQOs for RIVERS in priority RUs in the Olifants-Doorn WMA
Table 8.3	Summary of the narrative RQOs for RIVERS in priority RUs in the Olifants-Doorn WMA. TWQR = Target Water Quality Range (DWAF 1996); Fitness for use = FFU (DWAF 1996a)
Table 8.4	Summary of key hydrological RQOs for ESTUARIES AND VLEIS in priority RUs in the Olifants-Doorn WMA
Table 8.5	Summary of the narrative RQOs for ESTUARIES, VLEIS and WETLANDS in priority RUs in the Olifants-Doorn WMA
Table 8.6	Summary of narrative RQOs for GROUNDWATER in priority RUs in the Olifants-Doorn WMA
Table 9.1	Hydrology RQOs for E33H for the REC of the estuary of a C. To be met at the E3H004 (Lutzville). Units m^3/s
Table 9.2	Water quality RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.3	Macrophyte RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.4	Microalgal RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.5	Invertebrate RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.6	Fish RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.7	Bird RQOs and TPCs for the Olifants River Estuary (E33H)
Table 9.8	Groundwater Reserve Requirements for E33H70
Table 10.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations and descriptions of station type
Table 10.2	Water quality RQOs and TPCs for E10K
	······································

Table 10.4	Riparian vegetation RQOs and TPCs for E10K; * = exotic species.	75
Table 10.5	Macroinvertebrate RQOs and TPCs for E10K	76
Table 10.6	Fish RQOs and TPCs for E10K	77
Table 10.7	Groundwater Reserve Requirements for E10K	77
Table 11.1	Summary of the flood requirements for E10J for REC of Category D	79
Table 11.2	Water quality RQOs and TPCs for E10J	80
Table 11.3	Fish RQOs and TPCs for E10J	81
Table 11.4	Groundwater Reserve Requirements for E10J	82
Table 12.1	Summary of the flood requirements for E10H	85
Table 12.2	Water quality RQOs and TPCs for E10H	85
Table 12.3	Geomorphological RQOs and TPCs for E10H	86
Table 12.4	Riparian vegetation RQOs and TPCs for E10H; * = exotic species	86
Table 12.5	Macroinvertebrate RQOs and TPCs for E10H	87
Table 12.6	Fish RQOs and TPCs for E10H	88
Table 12.7	Groundwater Reserve Requirements for E10H	89
Table 13.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations a descriptions of station type.	
Table 13.2	Summary of the flood requirements for Rondegat in E10G	93
Table 13.3	Water quality RQOs and TPCs for Rondegat in E10G	93
Table 13.4	Geomorphological RQOs and TPCs for Rondegat in E10G	94
Table 13.5	Riparian vegetation RQOs and TPCs s for Rondegat in E10G; * = exotic species	94
Table 13.6	Macroinvertebrate RQOs and TPCs for Rondegat in E10G	95
Table 13.7	Fish RQOs and TPCs for Rondegat in E10G	96
Table 13.8	Groundwater Reserve Requirements for E10G	97
Table 14.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations a descriptions of station type.	
Table 14.2	Summary of the flood requirements for E10F 1	00
Table 14.3	Water quality RQOs and TPCs for E10F 1	01
Table 14.4	Geomorphological RQOs and TPCs for E10F1	02
Table 14.5	Riparian vegetation RQOs and TPCs for E10F; * = exotic species 1	02
Table 14.6	Macroinvertebrate RQOs and TPCs for E10F 1	03
Table 14.7	Fish RQOs and TPCs for E10F 1	04
Table 14.8	Fish RQOs and TPCs for E10F tributaries 1	05
Table 14.9	Groundwater Reserve Requirements for E10E and E10F 1	06
Table 14.10	Water quantity RQOs for the Alluvium Aquifer in RU33 1	07
Table 14.11	Water quality RQOs for the Alluvium Aquifer in RU33 1	07
Table 14.12	Water quantity RQOs for the TMG Aquifer in RU33 1	08
Table 14.13	Water quality RQOs for the TMG Aquifer in RU33 1	08
Table 15.1	Fish RQOs and TPCs for E10D1	12
Table 15.2	Fish RQOs and TPCs for E10D tributaries 1	13

Table 15.3	Groundwater Reserve Requirements for E10D	. 113
Table 15.4	Water quantity RQOs for the Alluvium Aquifer in RU40	. 115
Table 15.5	Water quality RQOs for the Alluvium Aquifer in RU40	. 115
Table 15.6	Water quantity RQOs for the TMG Aquifer in RU40	. 116
Table 15.7	Water quality RQOs for the TMG Aquifer in RU40	. 116
Table 16.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations descriptions of station type.	
Table 16.2	Summary of the flood requirements for E24M.	. 120
Table 16.3	Water quality RQOs and TPCs for E24M	. 121
Table 16.4	Geomorphological RQOs and TPCs for E24M	. 121
Table 16.5	Riparian vegetation RQOs and TPCs for E24M; * = exotic species	. 122
Table 16.6	Macroinvertebrate RQOs and TPCs for E24M	. 123
Table 16.7	Fish RQOs for E24M	. 123
Table 16.8	Groundwater Reserve Requirements for E24M.	. 124
Table 17.1	Fish RQOs and TPCs for E40C-06492 (lower reaches in Oorlogskloof) and E40D	. 128
Table 17.2	Groundwater Reserve Requirements for E40D	. 128
Table 17.3	Locations of priority wetlands in the Nieuwoudtville cluster (partially in E40C)	. 130
Table 17.4	Wetland RQOs for Nieuwoudtville Wetlands cluster (partially in E40C)	. 130
Table 17.5	WET-Health scores for priority wetlands in the Nieuwoudtville cluster (partially in E	,
Table 18.1	Groundwater Reserve Requirements for E33F	. 132
Table 18.2	Water quantity RQOs for the Aquifers in E33F	. 133
Table 18.3	Water quality RQOs for the Aquifers in E33F	. 133
Table 19.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations descriptions of station type.	
Table 19.2	Summary of the flood requirements for E21J andE21L	. 137
Table 19.3	Water quality RQOs and TPCs for E21J and E21L	
Table 19.4	Geomorphological RQOs and TPCs for E21J and E21L at EWR6	. 138
Table 19.5	Riparian vegetation RQOs and TPCs for E21J and E21L; * = exotic species	. 139
Table 19.6	Macroinvertebrate RQOs for E21J and E21L (no TPCs available)	. 140
Table 19.7	Fish RQOs for E21J and E21L (no TPCs available)	. 140
Table 19.8	Fish RQOs for the Brandkraals (E21J) and Twee (E21H (A1)) (no TPCs available)	. 142
Table 19.9	Groundwater Reserve Requirements for E21J and E21L.	. 142
Table 20.1	Water quality RQOs for E21G (no TPCs available)	. 144
Table 20.2	Fish RQOs and TPCs for E21G	. 145
Table 20.3	Groundwater Reserve Requirements for E21G	. 145
Table 20.4	Water quantity RQOs for the Alluvium and Bokkeveld Aquifer in RU41	. 147
Table 20.5	Water quality RQOs for the Alluvium and Bokkeveld Aquifer in RU41	. 147
Table 20.6	Water quantity RQOs for the TMG Aquifer in RU41	. 148
Table 20.7	Water quality RQOs for the TMG Aquifer in RU41	. 148

Table 21.1	Groundwater Reserve Requirements for E23K	150
Table 22.1	Groundwater Reserve Requirements for RU8 (E33C, E33D and E33E)	152
Table 23.1	Groundwater Reserve Requirements for E32E	154
Table 24.1	Fish RQOs and TPCs for G30D	157
Table 24.2	Groundwater Reserve Requirements for G30D	157
Table 24.3	Water quantity RQOs for the Aquifers in RU53	158
Table 24.4	Water quality RQOs for the Aquifers in RU53	159
Table 25.1	Groundwater Reserve Requirements for G30E	162
Table 25.2	Water quantity RQOs for the Alluvium Aquifer in RU52	162
Table 25.3	Water quality RQOs for the Alluvium Aquifer in RU52	163
Table 25.4	Water Level RQOs for the Alluvium Aquifer in RU52	163
Table 25.5	Volume and water level RQOs for Verlorenvlei (G30E) for Category C (Ninham Sh 2009)	
Table 25.6	Water quality RQOs and TPCs for Verlorenvlei estuary (G30E) (CSIR 2010)	166
Table 25.7	Macrophytes and algae RQOs and TPCs for Verlorenvlei estuary (G30E) (CSIR 20	
Table 25.8	Fish RQOs for Verlorenvlei estuary / wetland in G30E (CSIR 2010).	167
Table 25.9	Birds RQOs and TPCs for Verlorenvlei estuary / wetland in G30E (CSIR 2010)	168
Table 26.1	Fish RQOs and TPCs for Langvlei River (G30F) (Ninham Shand. 2009)	170
Table 26.2	Groundwater Reserve Requirements for G30F	170
Table 26.3	Water quantity RQOs for the Alluvium Aquifer in RU56	172
Table 26.4	Water quality RQOs for the Alluvium Aquifer in RU56	172
Table 26.5	Water Level RQOs for the Alluvium Aquifer in RU56	173
Table 26.6	Annual Volume RQOs for Wadrif Wetland and Wadrif Pan (G30F) (Southern Wa 2003)	
Table 26.7	Aspects of the RQOs for Wadrif Wetland (G30F) (Southern Waters 2003)	174
Table 26.8	Water level and inundation RQOs for Wadrif Pan (G30F) (Southern Waters 2003)	174
Table 26.9	Birds RQOs and TPCs for Wadrif Wetland in G30F (CSIR 2010)	175
Table 26.10	Wetland RQOs for Wadrif Wetlands (G30F)	175
Table 27.1	Groundwater Reserve Requirements for G30G	178
Table 27.2	Water quantity RQOs for the Alluvium Aquifer in RU57	178
Table 27.3	Water quality RQOs for the Alluvium Aquifer in RU57	179
Table 27.4	Water Level RQOs for the Alluvium Aquifer in RU57	179
Table 27.5	Water level and inundation RQOs for Jakkalsvlei Pan (G30G) for a C category (South Waters 2003).	
Table 28.1	Groundwater Reserve Requirements for G30H.	181
Table 28.2	Wetland RQOs for Sandlaagte Wetlands cluster (G30H)	182
Table 29.1	Monitoring methods for Olifants Estuary RQOs	184
Table 30.1	Existing and proposed monitoring networks for priority RUs	189

List of Figures

Figure 2.1	Integrated Units of Analysis for the Olifants-Doorn WMA
Figure 6.1	Original criteria weights provided in the RU prioritization tool (top) and adjusted weights as used for rivers in this project (bottom). The colours refer to the sub-criteria listed in Table 6.1
Figure 6.2	Olifants-Doorn WMA: Priority Resource Units
Figure 9.1	E3H004 on the Olifants River at Lutzville
Figure 9.2	Olifants River Estuary
Figure 9.3	Geographical boundaries of the Olifants River Estuary
Figure 9.4	Map showing sampling locations in the Olifants Estuary (from DWAF 2006b)
Figure 10.1	E1R001 at Bulshoek Barrage (www.dwa.gov.za)71
Figure 10.2	EWR 2 (2006)
Figure 10.3	Plan layout for EWR Site 2
Figure 11.1	E1H016 on the Olifants River at Clanwilliam Dam (www.dwa.gov.za)
Figure 12.1	E1H006 on the Jan Dissels River at Clanwilliam
Figure 12.2	Jan Dissels River at causeway at Boskloof
Figure 13.1	Rondegat River at EWR Site 3 (2006)
Figure 13.2	Plan layout for EWR Site 3
Figure 14.1	E1H013 on the Olifants River at the Citrusdal Bridge
Figure 14.2	Plan layout for EWR Site 1
Figure 14.3	EWR 1 (Olifants River; 2006) from the N2 100
Figure 14.4	Map of RU33 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)
Figure 15.1	Map of RU40 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)
Figure 16.1	E2H003 at Melkboom on the Doring River (www.dwa.gov.za)
Figure 16.2	Plan layout for EWR Site 5 118
Figure 16.3	EWR 5 (2006) in E24M 119
Figure 16.4	Lateral orientation of the rated section set up in a pool at the solar panel for the Oudrif Guest Farm
Figure 17.1	Brakwater in the Oorlogskloof Nature Reserve, Oorlogskloof River
Figure 17.2	Rietvlei on the Koebee River
Figure 18.1	Map of E33F with aquifer delineation (blue: TMG Aquifer, yellow: Alluvium, light olive: Gifberg), existing monitoring points (blue: WMS boreholes) and proposed monitoring points (white squares)
Figure 19.1	EWR 6 (2006) in E21J 135
Figure 19.2	Plan layout for EWR Site 6 136

Figure 20.1	Map of RU41 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (none) and proposed monitoring points (white squares)
Figure 24.1	Map of RU53 with aquifer delineation (light blue and pink: TMG Aquifer, yellow: Alluvium), existing monitoring points (blue: WMS boreholes) and proposed monitoring points (white squares)
Figure 25.1	Map of RU52 with aquifer delineation (light blue and pink: TMG Aquifer, yellow: Alluvium), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)
Eiguro 25 2	Spatial extent of Variagemulai (dark blue area) as identified in CapaNature, CARE fina
Figure 25.2.	Spatial extent of Verloernvlei (dark blue area) as identified in CapeNature, C.A.P.E fine scale planning
-	
Figure 26.1	scale planning

List of Boxes

Box 9.1	Relevant details for Olifants River Estuary	64
Box 10.1	Relevant details for EWR Site 2 (2006): Olifants River	72
Box 13.1	Relevant details for EWR Site 3 (2006): Olifants River	92
Box 14.1	Relevant details for EWR Site 1 (2006): Olifants River	99
Box 16.1	Relevant details for EWR Site 5 (2006): Doring River 1	118
Box 19.1	Relevant details for EWR Site 6 (2006): Groot River 1	136

List of Acronyms and Abbreviations

CAGE	Citrusdal Artesian Groundwater Exploration
C.A.P.E.	Cape Action for People and the Environment
CD: RDM	Chief Directorate: Resource Directed Measures
DANIDA	Danish International Development Agency
DEAT	Department of Environmental Affairs and Tourism
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
D: NWRP	Directorate: National Water Resource Planning
D: WRPS	Directorate: Water Resource Planning System
EIA	Environmental Impact Assessment
EGSA	Ecosystem Goods, Services and Attributes
EIS	Ecological Importance and Sensitivity
ESBC	Ecological Sustainable Base Configuration
EWR	Ecological or Environmental Water Requirements
FEPA	Freshwater Ecosystem Protected Areas
GRDM	Groundwater Reserve Directed Measures
ISP	Internal Strategic Perspective
IUA	Integrated Unit of Analysis
IWRM	Integrated Water Resources Management
IWRP	Integrated Water Resources Planning
MLF	Maintenance Low Flow
NEC	Accepted Gazetted Category
PES	Present Ecological Status
PGWC	Provincial Government of the Western Cape
PMC	Project Management Committee
PS	Present Status (used explicitly for groundwater)
RAMSAR	Convention on Wetlands
RC	Recommended Category (for rivers, usually expressed as Recommended Ecological
	Category, but the more general RC has been used here for river, estuaries, wetlands,
	and groundwater)
RQO	Resource Quality Objective
RU	Resource Unit
SANBI	South African National Biodiversity Institute
SASS	South African Scoring System
TMG	Table Mountain Group
TMGA	Table Mountain Group Aquifer
ToR	Terms of Reference
TPCs	Threshholds of Potential Concern
WARMS	Water Registration Management System
WMA	Water Management Area
WMS	Water Management System
WODRIS	Western Cape Olifants-Doring River Irrigation Study
WRC	Water Research Commission
WRCS	Water-Resource Classification System
WRYM	Water Resources Yield Model
WUA	Water Users Association

Part I: Introduction and Preparation

1 INTRODUCTION

1.1 BACKGROUND TO THE STUDY

The Department of Water Affairs (DWA), Chief-Directorate: Resource Directed Measures (CD:RDM) appointed Umvoto Africa (Pty) Ltd to undertake the "Determination of Resource Quality Objectives in the Olifants-Doorn Water Management Area (WMA)", based on the Proposal by Umvoto Africa and Southern Waters for the Project WP10537, submitted in June 2011.

The project was meant to run in parallel with the recent Water Resource Classification Study, undertaken by the DWA for the Olifants-Doorn WMA. However, due to delays beyond the control of this study, the Water Resource Classification Study was completed by beginning April 2012 and this study needed to develop RQOs based on the completed classification.

This study is seen as a Pilot Study, as the Olifants-Doorn WMA would then be the first WMA in which the Water Resource Classification process and the determination of RQOs have been completed according to the recently developed guidelines.

1.2 TERMS OF REFERENCE

The Terms of Reference for the study, as provided by the DWA, stipulates the aim and objectives as follows:

"The main aim of the project is to determine Resource Quality Objectives (RQOs) for all significant water resources in the above-mentioned Water Management Area. The RQOs are to be determined in accordance with the Department of Water Affairs' Procedures to Determine and Implement Resource Quality Objectives."

"The RQO determination process must not be limited to Surface Water Resource Quality Objectives, but must be extended to all forms of water resources that exist in the water management area (wetlands, lakes, river, groundwater, etc.)."

The Procedure to Determine and Implement Resource Quality Objectives (DWA 2011) describes a seven-step process for the determination of RQOs. However, these steps partly overlap with the steps for the Water Resource Classification System (WRCS), which was completed by beginning April 2012. Hence, the RQO procedures have been rationalised to avoid duplication of effort and contradiction of results.

1.3 PURPOSE OF THIS REPORT

The report:

- summarises the prioritisation of the Resource Units (RUs) in the Olifants-Doorn Water Management Area (WMA) (PART II: Section 6);
- summarises the evaluation of the priority Resource Units and the identification of the RQOs developed per selected RU (PART II: Section 7); and
- presents the draft RQOs developed for each of the priority Resource Units (PART III: Sections 9 to 28) providing RQOs that are considered pragmatic and implementable for rivers, estuaries, groundwater and wetland clusers in the priority RUs.

2 APPROACH ADOPTED FOR RQOS

RQO are both descriptive statements and attendant numerical values for a range of RQOs throughout the WMA (DWA 2011).

- The RQOs themselves are narrative and qualitative statements that describe the overall objectives for the RU (DWA 2011). They should be meaningful to stakeholders and responsible managers, and give direction for whatever action is necessary to achieve the vision for the resource. These RQOs are gazetted and are thus supported by law (DWA 2011).
- The numerical limits give a quantitative measure of the RQOs that can be used for monitoring, such as an upper limit for slat concentrations or a lower population size limit for fish. Typically there is a paucity of scientific information on which to base such numerical limits, and so these numerical limits are not gazetted and thus may be more easily adjusted if found to be inaccurate.

2.1 SEVEN STEP PROCESS

The seven-step procedure adopted by DWA for the determination of RQOs (DWA 2011) is:

- 1. Delineate the IUAs and define Resource Units
- 2. Establish a vision for the catchment and key elements of the IUAs
- 3. Select preliminary Resource Units for RQO determination
- 4. Prioritise Resource Units and sub-components for RQOs determination, select indicators for monitoring and propose the direction of change.
- 5. Develop draft RQOs and Numerical Limits
- 6. Agree Resource Units, RQOs and Numerical limits with key stakeholders
- 7. Finalise and Gazette RQOs.

There is considerable overlap between these seven activities and the seven-step procedure for the Water-Resource Classification System (WRCS; Dollar *et al.* 2006) that is used in the Classification Process. The Classification activities in the Olifants-Doorn WMA provided significant input to the RQO development process:

- The delineation of the catchment into IUAs and the description of delineated Resource Units (RQO Step 1) have been completed by the Classification.
- The vision for the catchment and the key elements of the IUAs (RQO Step 2) have been established.
- The hydrological RQOs and associated numerical limits (RQO Step 5) have been established for the RUs.

This means that the RQO process need only to start at Step 3, and can derive some of the RQOs and numerical values needed directly from the outcome of the Classification Process.

The approach adopted in this study was to:

- 1. provide RQOs at different levels of detail depending on available information and the particular needs of the ecosystem and/or users;
- 2. provide hydrological RQOs for every quaternary catchment/node;
- 3. ensure that pragmatic and implementable RQOs were provided for priority RUs.

The approaches to specific issues are detailed below.

2.2 RIVERS

2.2.1 Incorporation of available EWR data at a finer spatial scale

The Classification Project concentrated on the data produced as part of the development of the WRCS, and did not incoporate some of the data that had subsequently become available at a finer scale. These data have subsequently been incoprotaated into the RQOs. These are, in particular:

Jan Dissels: A rapid EWR determination was done for the Jan Dissels River as part of the compulsory Licesning procedures in that catchment (DWAF 2008). This resulted in a new node (Q7) at the confluence of the Jan Dissels with the Olifants (within E10J) in addition to R24 (for E10H) at the gauge (E1H006).

Kouebokkeveld: The rapid EWR determination was done for the Kouebokkeveld rivers as part of the C.A.P.E projects (CAPE 2009). This resulted in disaggregated hydrological information and EWRs in E21G and E21H:

- An existing node (R41 on the Leeu) for E21G was augmented with three additional nodes (A6-Waterkloof, A7-Skoongezicht and A8-Meul) (eight sites rather than two); and
- Three nodes (A1-Twee, A2-Heks, A3-Middeldeur) were added on tributaries in E21H.
- E10J: Formal stipulations for lowflows are not appropriate at E10J because the Olifants River in this quaternary is used as a conduit for irrigation releases from Clanwilliam Dam (and to maintain levels at Bulshoek Barrage). The Raising Clanwilliam Dam study (Southern Waters 2007; Brown 2010) evaluated the extent to which proposed changes to the height of Clanwilliam Dam and releases from the dam would affect the Olifants River downstream of the dam wall to Bulshoek Barrage, and made recommendations for maintaining PES in the Olifants River between Clanwilliam Dam and Bulshoek Weir, i.e., R24: E10J.

2.2.2 Addition of nodes to account for all quaternaries

Nodes were added at the outlets of five quaternary catchments, to ensure that all quaternaries were included in this study, viz:

- Q1 at the outlet of E33F at the confluence of the Droe and Troe-Troe rivers (part of the Olifants-Doring dryland farming Integrated Unit of Analysis (IUA);
- Q2 in E31A (an endorheic catchment in the Knersvlakte IUA);
- Q3 at the outlet (coast) of F60A on the Brak (in the Knervlakte IUA);
- Q4 at the "outlet" of F60E; and
- Q5 at the outlet of G30H on the Sandlaagte (in the Sandveld IUA).

2.2.3 Verification of Classification outputs

The basic Classification outputs (Section 3) were checked, and where applicable, updated to ensure that:

- information from the Comprehensive Reserve determination for the Olifants and Doring Basin was used in preference to other data, where applicable.
- information from the Rapid III Reserve determination for the Sandveld basins was used in preference to other data where applicable.
- the hydrological region used in Desktop matched more detailed information from reserve-related studies.
- the PES designations matched those from the recent national PES studies (DWA 2012d);

2.2.4 Floods (over and above node Reserve allocation)

The Reserve allocations at each reach were sufficient to maintain the condition of that reach and sufficient to meet that reach's contribution to the allocations in the downstream reaches (see also Section 2.2.10). In some cases, this resulted in additional flood requirements for unimpacted river reaches. These floods form an essential part of the Reserve requirements for river reaches downstream and for the estuary. In theory, the allocation of these additional floods limits large in-channel structures in those rivers. In practice, however, in-channel structures are impractical in those rivers for a wide variety of reasons, mainly related to a paucity of dam sites and/or remoteness. In all cases, according to the available data, the floods allocated still occurred naturally in 2007, i.e., the requirements should not affect existing infrastructure. The rivers affected by this flood allocation are:

- Tributaries and mainstem Olifants (upper reaches to gorge (E10A to E10D)), 60–80%;
- Kruis, Sand, Welgemoed and Driedam se (E21A, E21B, E21C), 60%;
- Houdenbeks (E21D), 40%;
- Tributaries of Riet (E21E and F), 80%;
- Tributaries and mainstem Leeu (E21G), 60%;
- Twee, 80%; other tributaries and mainstem Leeu (E21H), 60%;
- Mainstem Groot (E21J), 80%;
- Matjies (E21K), 80%;
- Matjies, other tributaries and mainstem Groot (E21L), 80%;
- Patats, Groot (b) and other rivers (E22A), 80%;
- Mainstem Groot (b) (E22B), 80%;
- Rivers in E22C (tributaries to Kolkies/Doring), 80%;
- Mainstem Doring (E22E), 80%;
- Tributaries and mainstem Doring (E22F), 80%;
- Mainstem Doring (E22G), 80%;
- Pakhuislaagte and other tributaries (Tankwa) (E23K), 80%;

- Eselbank, Dassieboskloof, other tributaries, and mainstem Tra-tra, (E24A), 80%;
- Matjiesfontein, other tributaries, and mainstem Tra-tra (E24B), 60%;
- Avontuur, Putslaagte, Biedou, and other tributaries (E24J), 80%;
- Kransgat, Brak, Paalkraal, and other tributaries (E24K), 80%;
- Brandewyn, Klipmekaar, and mainstem Doring (E24L), 80%;
- Olienhouts, Gifberg, other tributaries, and mainstem Doring (E24M), 80%;
- Droe, Varkfontein, other tributaries, and mainstem Oorlogskloof (E40A), 60%;
- Karee, Agterplaas, and mainstem Oorlogskloof (E40B), 60%;
- Tributatires and mainstem Oorlogskloof (E40C), 80%;
- Klein-Koebee, de Hoop, other tributaries, and mainstem Koebee (E40D), 80%;
- Huis, Soutkloof, other tributaries, and Kruismans (G30B), 60%;
- Kleinvlei, Jansekraal, and Bergvallei (G30C), 60%;
- Krom Antonies, Hol, other tributaries and mainstem Verlorevlei (G30D and G30E), 60%.

2.2.5 Focus on minimum dry season lowflows

The hydrological RQOs for the Olifants-Doorn WMA focus on minimum dry season lowflows. The dry summer months are without doubt the most critical period for implementation of the Reserve in the WMA because:

- 1) the growing season (when abstraction is highest) coincides with the period of lowest flow;
- there are currently very few guaging stations in the Olifants-Doorn WMA, which means that it is not possible to monitor the full range of Reserve flows, however, minimum fllow flows CAN be measured relatively easily either with a flow meter, or by establishing a rated section;
- 3) there are relatively few dams in the area that are large enough to appreciably affect wet season flows; and

4) only Clanwilliam Dam has outlet that can release floods, so Reserve flood requirements cannot be managed other than by limiting the number of in channel storages (see Section 2.2.4).

Thus, the single most important aspect of the hydrological regime in terms of implementing the Ecological Reserve is to ensure that the minimum dry season lowflows are met.

2.2.6 Calculation of incremental inflow and FEPAs

In order to provide a Reserve water balance for the Olifants and Sandveld catchments, the Classification study accommodated FEPAs as follows:

- 1. calculating the percentage of each quaternary that had been identified as FEPAs;
- 2. assigning an A/B category to the areas that had been identified as FEPAs;
- 3. setting the Reserve for a FEPA A/B category at 60% of the proportional nMAR in each quaternary.
- 4. calculating the proportional nMAR by multiplying the incremental nMAR by the percentage of each quaternary that had been identified as FEPAs, i.e., if 90% of the quaternary is FEPA then the incremental inflow from the FEPAs would be 60% of 90% of the nMAR.

This approach is difficult to implement because there is an underlying, and untested, assumption that in order to protect an FEPA tributary, 60% of the natural flow of that tributary must reach the mainstem. In fact many of the tributaries in the Olifants-Doorn WMA are in reasonably good condition upstream of the agricultural areas but, once they enter the agricultural areas, they are heavily abstracted and highly impacted. Examples of this on the Olifants River include: E10D-08034 (Tee River) and E10F-07605 (Heks River). Indeed, many of these rivers have numerous farm dams on them, E10F-07566 (Palmietfontein River) being a case in point. In most instances water from these rivers does not flow into the mainstem Olifants River at all in the dry season (C. Brown, pers. obs.). Thus, while it is possible to set 60% of the MAR as a requirement on paper, it will mean clawing back 40-60% of the dry season flows from farmers' allocations. Furthermore, because the section of river where 60% is 'required' is situated upstream of where the farmers' abstract, it will be difficult to justify the claw-back. In our opinion, trying to implement such a requirement in the context of the Olifants Basin will possibly undermine implementation of the ecological Reserve elsewhere in the catchment.

Thus, in the interests of implementability, the approach taken for the Reserve requirements stipulated as part of the RQOs was:

- 1. For each quaternary, use the sub-quaternaries (as defined in DWA 2012d) as these represent the most significant tributaries, and thus the major contributors to imcremental inflow in a quaternary;
- 2. Identify which of these quaternaries have been identified as FEPAs;
- 3. Identify the coordinates of the point upstream of which the FEPA tributaries could conceivable either have a PES of A/B category or could be restored to such.
- 4. Set the requirement upstream of this point as 60% of MAR¹.
- 5. For the incremental inflow to the mainstem rivers, focus on the dry season, and ensure that the Reserve stipulations for the month with lowest flow balance from upstream to downstream.
- 6. For each sub-quaternary, identify an absolute minimum lowflow below which the river should not drop at anytime.

¹ Note, there is usually no hydrological information available for the sub-quaternaries, so this is 60% of an unknown MAR.

Note: It is likely that in many instances, the absolute minimum lowflow does not occur currently. Thus, implementation will require some claw-back from farmers, but this will be considerably less severe than would be the case if the WRCS approach was gazetted.

2.2.7 E10K (R33) – Reserve allocations

The Present Ecostatus (PES) at EWR Site 2 is an E-category. The main reason for the low PES is the presence of Bulshoek Barrage and Clanwilliam Dam upstream. These structures trap sediment and middle-range floods vital for the maintenance of the channel. This means that the site is supply-limited and has adjusted to the imposed change. The current channel has narrowed since the 1940s, and significant riparian vegetation encroachment has occurred. Additional impacts include cultivation of flood terraces. The current channel type represents pool-like conditions, although it is likely to have been an anabranching channel type prior to the construction of Bulshoek Barrage and Clanwilliam Dam. These changes have resulted in a geomorphology ecostatus (relative to natural/reference conditions) of an E-category.

The channel changes described above also represent a reduction in the habitat available for fish and macroinvertebrates, which together with the altered hydrology and barrier effects of the Bulshoek Barrage and Clanwilliam Dam have caused a significant change in these communities relative to reference conditions and hence a reduction in the ecostatus for these components.

There is little or no certainty that the ecostatus of EWR Reach 2 can be improved to a D-category solely by implementing flow releases from Bulshoek Barrage. During the EWR Workshop there was unanimous agreement from the scientists that the risk of even relatively high (40% natural Mean Annual Runoff (nMAR)) flow releases not supporting a D-category was extremely high as many of the impacts were related to the dam/barrage and, as such, improvement would probably require removal of (at least) Bulshoek Barrage. Furthermore, system analysis suggested that the estuary downstream of EWR Site 2 could be maintained in its present condition through reinstatement of some summer flows past EWR Site 2, and the winter contributions from primarily the Doring River, thereby relieving the pressure on the upper Olifants River to support the lower Olifants River and estuary. It was also acknowledged that a reduced EWR (10-17% nMAR), which was primarily aimed at maintenance of the water quality in EWR Reach 2, would result in an improvement in PES, albeit not to a D-category.

Thus, the Preliminary Ecological Reserve signed off for this location was for an E-category, and was c. 10% of the nMAR, excluding the floods with a return period greater than one year. After consideration of the above, and of aforegoing descision with respect to E10K, the signed off Preliminary Reserve was therefore used in the Classification balance sheet.

2.2.8 Estuary flow requirements

The estuary flow requirements provided in Section 9.2 are based on the deliberations by the estuarine team in 2004-2006 during the Comprehenisve Reserve Determination (DWAF 2006b). The process used to decide on the estuary flow requirements is different from that used for rivers in that it produces a recommended flow regime (as a time-series .mrv file) that has been evaluated using a hydrodynamic model of the estuary, which is calibrated with observed flows from Lutzville bridge. Thus, unless the records at Lutzville bridge are shown to be grossly incorrect, the estuarine requirements SHOULD be fairly robust with respect to changes in the synthesised hydrology. For this reason, we have opted not to adjust the estuarine requirements on the basis of changes made to the hydrology during the Classification project, and the estuary flow requirements provided in Section 9.2 are taken directly from DWAF (2006b).

2.2.9 Temporal scale of the "balance sheet" tool

The "balance sheet" tool was updated on the basis of activities explained in Sections 2.2.1 to 2.2.6. It was also extended to allow for "balancing" at a monthly time-step. This enabled a more refined level of balancing, but more importantly meant that minimum lowflow requirements could be set (e.g., see Section 2.2.6).

2.2.10 Balancing the "balance sheet" tool

The Reserve requirements for different reaches of river are set, in the first instance, to maintain a target ecological category in that section. Thus, the volumetric and distribution requirements tend to differ from reach to reach. This is particularly evident in a frequent mis-match between the estuary and the river reach immediately upstream thereof.

The Classification Process requires that the Reserve allocations that are gazetted are sufficient to meet the river reach to which the reserve is allocated as well as sufficient to meet that reach's contribution to the allocations in the downstream reaches.

This means that, in some areas, such as the Kouebokkeveld where the rivers are impacted by development at the top of the catchment, the Reserve allocations will be higher than those required to maintain the condition of those river reaches.

In an effort to reduce the off-stream impacts of elevated Reserve allocations, and in recognition of the fact that many of the downstream reaches are in good ecological condition under their current (2011) flow conditions, any additional water required to meet downstream Reseve allocations was first sourced by increasing the Reserve requirements in undeveloped tributaries, and by limiting increases in more developed areas to the winter months.

Where winter allocations were increased to approximate 2006 flows, July, August and September were targeted, as farms dams tend to delay the onset of first winter flows (June) and reduce the duration of the winter (October). So higher Reserve requirements in July, August and September should not reduce the existing yield from farm dams. Also, the total Reserve allocations are lower than the 2006 flows.

2.2.11 Management Class

In terms of the WRCS, Management Classes apply only to Intergrated Units of Analysis (Dollar *et al.* 2010). There are no Management Classes for quaternaries.

2.2.12 .tab, .rul and .mrv files

The hydrological RQOs in this report only present the .tab files. The associated .rul and .mrv files are available electronically but are not particularly useful in the context of the WMA. The reasons for this are:

- The synthesised hydrology for the Olifants-Doorn WMA has been adjusted approximately six times in the last 10 years. All the files for river nodes are calculated proportional to the naturalised hydrological input data. Thus, if the estimated naturalised flows at a node are higher, then the hydrological RQOs will be higher. Conversely, if the estimated flows are lower, then the hydrological RQOs will be lower tan those given.
- 2. The percentage nMAR represented by the .rul and .mrv files is highly dependent on the parameters chosen in the Desktop Model. For instance, the assurance values used to create the .rul and .mrv files from the .tab data, can greatly influence the longterm average of the Reserve requirement. The Western Cape recommended (default) assurance value for the

maintenance lowflows is 145, whereas that for the Drakensberg is 120. The 145 returns a higher longterm percentage MAR than does the 120. In some cases, as much as 75% higher than the recommended value in the .tab file.

- 3. There are currently very few guaging stations in the Olifants-Doorn WMA, which means that it is not possible to monitor the full range of Reserve flows. Nor is it possible to find a gauge with an unimpacted flow regime that can be used as a reference for naturalised flow.² Furthermore, if such a gauge was found or constructed, new .rul curves would need to be constructed for every quaternary that used it as a reference.
- 4. There is only one dam in the Olifants-Doorn WMA, Clanwilliam Dam, which can make flood releases, and the releases from Clanwilliam have been specifically designed to facilitate its role as an irrigation dam (see Section 11.2). Thus, Reserve flood requirements cannot be managed other than by limiting the number of small farm dams, and as such there is little or no need for .rul or .mrv files.

2.2.13 Monitoring of RQOs

The detailed RQOs for the priority RUs provide possible monitoring locations for monitoring the RQOs in individual RUs. These are only suggestions and the locations may be adjusted according to the requirements of ongoing or forthcoming monitoring programmes. Although there are several ongoing monitoring activities in the WMA, details about locations and frequency of sampling are often unclear. Where possible, these have been taken into account in setting the RQOs and recommending the monitoring locations. A review of these monitoring initiatives, and rationalisation of some activities and expansion of others, would greatly benefit water-resource management in the WMA, but is beyond the scope of this project.

2.3 WETLANDS

There are many wetlands of a variety of types in the Olifants-Doorn WMA; several clusters of which (approximately 25 000 ha) have been identified as National Freshwater Ecosystem Priority Areas (NFEPAs) (Nel *et al.* 2011). However, given the current level of information available for these wetlands, it is unrealistic to try to define RQOs for each individual wetland. It is also probably not feasible to monitor or impose such RQOs. Thus, this study followed the DWA recommendations for identifying appropriate levels of RQO determination for wetlands (DWA 2012c).

In terms of DWA (2012c) specific RQOs should be set for 'priority' wetlands, where data are available and where the level of threat is very high, and/or high risk water-uses are in place or proposed. Desktop data were used to idenitfy priority wetland areas and to develop RQO's for monitoring their condition.

Existing data on wetlands in the WMA that were used to develop specific RQOs included:

NFEPA data on wetlands: Nel et al (2011) attempted an automated classification and prioritisation of South African wetlands. These date provide the NFEPA location and priority status of the wetlands within the WMA. The location of wetlands fairly accurate but the size (extent) and type (HGM wetland type) of wetlands is not. This is due the the limitations of the underlying wetland map and automation and modelling limitations for determining wetland types.

C.A.P.E. fine scale planning: This study provided higher resolution and more accurate mapping of the priority wetland areas within the study area. This initial mapping was updated and

² The comprehensive Reserve studies had to use a gauge in the Twenty-fours River catchment (Berg WMA) to disaggregate the monthly modelled flows in the Olifants River (DWAF 2006).

refined in the subsequent Mondi Wetland Project assessments (Job et al, 2011), described below.

Mondi Wetlands Project (2010): A combination of desktop and field-based assessments of the extent of intact wetlands and PES was done by wetland experts from the Mondi Wetlands Programme in 2010 (Job et al. 2011). These data provided information relating to the extent and condition of priority wetlands and were used to generate RQO's for priority wetlands in the WMA.

2.3.1 Prioirity wetland clusters

Two priority wetland clusters were identified based on their NFEPA conservation value, the threats on the extent and condition of the wetlands posed by adjacent landuse activities and the availability of baseline data to develop and enable monitoring of RQOs. These are:

- Sandlaagte (G30H quaternary catchment), and;
- Nieuwoudtville (E32E and E40C quaternary catchments).

2.4 GROUNDWATER

Two separate sets of groundwater RQOs are developed; i.e. catchment specific RQOs to maintain the required groundwater contribution to the Ecological Reserve, which is assumed to equal the required maintenance low flow, and aquifer specific RQOs for selected RUs to ensure the minimum requirements for groundwater contribution to the surface water bodies are met. The latter will be either qualitative and or quantitative and cover both the required groundwater discharge and groundwater quality.

- 1. Infiltration from aquifers into surface water bodies is crucial for their hydrological integrity. Therefore a possible RQO might be to stipulate a hydraulic gradient to be maintained, or a minimum water level at a specified distance from the surface water body.
- 2. The Present State of selected indicators is based on existing monitoring data, where available. If sufficient data is not available, extrapolation from other areas and or geological reasoning is used.
- 3. In terms of the priority set of groundwater relevant RUs, availability of or suitability for groundwater measurements is deemed to be an over-riding consideration in the selection of sites. This is because, even though Reserve data may be available for a site, if it cannot be monitored at that site then implementation of the Reserve cannot be assessed.
- 4. The applicable scale of the RQOs depends upon the number of aquifers contributing significantly to the river flow.
- 5. The RQOs and appropriate nunmerical limits are based on what information is available, various specialist reports and estimations using geological reasoning.

The focus of the groundwater RQOs is twofold; i.e.

- to support the ecological requirements of the receiving surface water bodies, as determined by the surface water RQOs, and
- to ensure adequate water quality for the direct and indirect users of the groundwater resource.

The most important aspect of the hydrogeological regime in terms of implementing the Reserve is to ensure that the contribution from groundwater supports the minimum dry season lowflows.

The present status (PS) for groundwater as given in the Classification project (DWA 2012a) was updated for each quaternary catchment during an expert workshop held on 4 and 5 October 2012. It

was further agreed that no recommended categories (RC) for groundwater resources will be specified, as there is no guideline and current recommendations are not aimed at maintaining the ecological requirements in the receiving surface water bodies. The updated PSs are documented in Appendix B.

The detailed RQOs for the priority groundwater RUs provide generic recommendations for a possible monitoring network to enable the monitoring of RQOs in individual RUs. These are only suggestions and the locations may be adjusted according to the requirements of ongoing or forthcoming monitoring programmes. Where possible, existing monitoring networks have been taken into account in setting the RQOs and recommending additional monitoring locations.

2.5 INTEGRATED UNITS OF ANALYSIS

The IUAs remained the same as the Classification project (Figure 2.1).

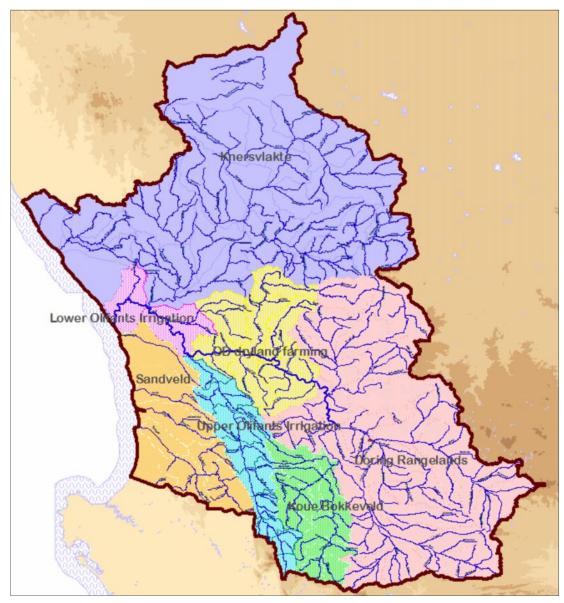


Figure 2.1 Integrated Units of Analysis for the Olifants-Doorn WMA.

3 OUTCOME OF THE CLASSIFICATION PROCESS

The categories for the quaternary catchments and associated management Classes for the IUAs in the Olifants-Doorn WMA recommended by the Classification project (DWA 2012a) are provided in Table 3.1. The Olifants-Doorn IUAs are shown in Figure 2.1. The requirements for ecological condition for the three Management Classes are given in Table 3.2. The adjustments required are discussed in the next section.

IUA	MC for IUA	Quat	River name	Mainstem EC	Tributary EC* (% of Incremental quat area)	Wetland area (WA) and EC*
		E10A	Olifants	С	С	-
		E10B	Olifants	С	C (80%); AB (20%)	-
		E10C	Olifants	С	AB (100%)	WA 1.2% of quat, 85% in AB
		E10D	Olifants	С	C (70%); AB (30%)	WA 5.4% of quat, 16% in AB
		E10E	Olifants	С	C (60%); AB (40%)	WA 5.8% of quat, 10% in AB
Upper Olifants	111	E10F	Olifants	D	C (40%); AB (60%)	-
Irrigation		E10G	Olifants/ Rondegat		C (70%); AB (30%)	-
		E10G	Olifants main	D	C (70%); AB (30%)	-
		E10H	Jan Dissels	D	D (95%); AB (5%)	WA 3.3% of quat, 10% in AB
		E10J	Olifants	D	D (80%); AB (20%)	WA 1.1% of quat, 5.5% in AB
		E10K	Olifants	D	D (95%); AB (5%)	WA 1.9% of quat, 50% in AB
		E21A	Kruis	D	С	-
		E21B	Welgemoed	D	D	-
		E21C	Winkelhaak	С	В	WA 0.5% of quat, 98% in AB
		E21D	Houdenbeks	D	D (95%); AB (5%)	-
Kaus		E21E	Riet	С	C (30%); AB (70%)	-
Koue Bokkeveld	11	E21F	Riet	С	C	WA 0.001% of quat, 91% in AB
DOKKEVEIU		E21G	Groot/Leeu	D	D (95%); AB (5%)	-
		E21H	Groot/Leeu	AB	B (40%); AB (60%)	-
		E21J	Groot	AB	AB (100%)	-
		E21K	Maatjies	В	AB (100%)	WA 1.7% of quat, 99% in AB
		E21L	Groot	AB	AB (100%)	-
		E22A	Doring	В	AB	-
		E22B	Doring	AB	AB (16%)	-
		E22C	Tankwa	AB	AB (5%)	-
		E22D	Tankwa	B	AB (95%)	-
		E22E	Doring	B	AB (30%)	-
Doring		E22F	Doring	B	AB (100%)	-
Rangeland	1	E22G	Doring	C	AB (100%)	WA 0.3% of quat, 100% in AB
rangolana		E23A	Tankwa	AB	AB (10070)	WA 0.1% of quat, 100% in AB
		E23B	Tankwa	AB	AB (20%)	WA 0.1% of quat, 100% in AB
		E23D	Tankwa	AB	AB (20 %)	WA 0.1% of quat, 100% in AB
		E23C E23D	Tankwa	AB	AB	
		-				WA 0.7% of quat, 100% in AB
		E23E	Tankwa	B B	AB (20%) B	-
		E23F	Tankwa		-	WA 0.001% of quat, 100% in AB
		E23G	Ongeluks	B AB	B (95%), AB (5%)	-
		E23H	Ongeluks		AB (5%)	-
		E23J	Ongeluks	В	AB (40%)	-
		E23K	Tankwa	В	AB (30%)	
_ .		E24A	Tra-tra	В	AB (100%)	WA 0.1% of quat, 100% in AB
Doring		E24B	Tra-tra	В	B (50%); AB (50%)	WA 0.001% of quat, 95% in AB
Rangeland	1	E24C	Bos	C	B	WA 0.8% of quat, 100% in AB
(contd)		E24D	Bos	C	B	WA 0.1% of quat, 100% in AB
		E24E	Wolf	AB	AB (5%)	
		E24F	Wolf	В	AB	WA 0.001% of quat, 79% in AB
		E24G	Wolf	В	AB (40%)	WA 0.001% of quat, 100% in AB
1		E24H	Doring	С	AB	-
		E40A	Oorlogskloof	C	C (90%); AB (10%)	
		E40B	Oorlogskloof	С	C (70%); AB (30%)	WA 0.001% of quat, 100% in AB

Table 3.1Summary of river and estuary Categories (EC) and IUA Management Classes (MC) from the
Classification project (DWA 2012a).

IUA	MC for IUA	Quat	River name	Mainstem EC	Tributary EC* (% of Incremental quat area)	Wetland area (WA) and EC*
		E31A	Kromme	В	B (85%); AB (15%)	WA 0.3% of quat, 100% in AB
		E31B	Kromme	В	B (10%); AB (90%)	WA 0.1% of quat, 99% in AB
		E31C	Kromme	В	B (65%); AB (35%)	WA 0.001% of quat, 100% in AB
		E31D	Kromme	В	В	-
		E31E	Kromme	В	В	-
		E31F	Kromme	В	В	-
		E31G	Kromme	В	B (90%); AB (10%)	-
		E31H	Hantams	В	B (80%); AB (20%)	-
		E32A	Hantams	В	B (85%); AB (15%)	WA 0.1% of quat, 95% in AB
		E32B	Hantams	В	В	WA 0.001% of quat, 100% in AB
		E32C	Hantams	В	B (70%); AB (30%)	WA 0.1% of quat 24% in AB
Knersvlakte		E32D	Hantams	В	B (85%); AB (15%)	-
RIEISVIARIE	1	E32E	Hantams	В	B (30%); AB (70%)	WA 2.2% of quat, 48% in AB
		E33A	Sout	В	B (60%); AB (40%)	WA 0.001% of quat, 100% in AB
		E33B	Sout	В	B (95%); AB (5%)	WA 0.2% of quat, 100% in AB
		E33C	Sout	D	D (95%); AB (5%)	WA 1.1% of quat, 92% in AB
		E33D	Sout	В	B (65%); AB (35%)	-
		E33E	Sout	С	B (75%); AB (25%)	WA 1% of quat, 99% in AB
		E33F	Hol	D	D	-
		F60A	Brak	В	В	WA 0.001% of quat, 1% in AB
		F60B	Klein Goerap	В	В	-
		F60C	Sout	В	В	WA 0.001% of quat, 1% in AB
		F60D	Groot Goerap	В	В	WA 0.001% of quat, 3.5% in AB
		F60E	Groot Goerap	В	В	WA 0.001% of quat, 19% in AB
Lower Olifants		E33G	Hol	D	С	WA 1.9% of quat, 13% in AB
Irrigation		E33H	Olifants	D	B (95%); AB (5%)	WA 3.8% of quat, 5% in AB
Ingation		E33H	Olifants estuary	С		
		E24J	Doring	С	AB (70%)	WA 0.001% of quat, 99% in AB
Olifants/ Doring		E24K	Doring	С	AB (20%)	-
Dryland	111	E24L	Brandewyn	В	C (90%); AB (10%)	WA 0.001% of quat, 100% in AB
Farming		E24M	Doring	С	C (40%); AB (60%)	WA 0.001% of quat, 100% in AB
ranning		E40C	Oorlogskloof/ Koebee	D	B (25%); AB (75%)	-
		E40D	Oorlogskloof/ Koebee	В	B (30%); AB (70%)	-
		G30A	Papkuils	С	C (95%); AB (5%)	WA 4.1% of quat, 35% in AB
		G30B	Kruismans	С	C (50%); AB (50%)	WA 0.9% of quat, 10% in AB
		G30C	Bergvallei	С	C (95%); AB (5%)	WA 1.5% of quat, 7% in AB
		G30D	Verlorevlei	С	C (80%); AB (20%)	WA 0.8% of quat, 3% in AB
Sandveld	III	G30E	Verlorevlei	С	C (90%); AB (10%)	WA 7.9% of quat, 3% in AB
		G30E	Verlorenvlei Estuary	С		
		G30F	Langvlei	С	С	WA 1.5% of quat, 5% in AB
		G30G	Jakkalsvlei	С	С	WA 0.9% of quat, 11% in AB
		G30H	Sandlaagte	С	С	WA 1.4% of quat 25% in AB

* Percentage of catchment area in an AB condition relates to Freshwater Ecosystem Priority Areas mapped.

Table 3.2 Req	uirements for ecologica	I condition for the Man	anagement Classes (De	ollar et al. 2006)
---------------	-------------------------	-------------------------	-----------------------	--------------------

Management Class	Description	Configuration guidelines
Class I: Minimally used	The configuration of water resources within an IUA results in an overall water resource condition that is minimally altered from its pre-development condition.	At least 60% of the freshwater ecosystems in a sub-basin are in an A or B category.
Class II: Moderately used	The configuration of water resources within an IUA results in an overall water resource condition that is moderately altered from its pre-development condition.	At least 40% of the freshwater ecosystems in a sub-basin are in an A or B category.
Class III: Heavily used	The configuration of water resources within an IUA results in an overall water resource condition that is significantly altered from its pre-development condition.	No requirement for A or B categories

4 UPDATED CONFIGURATION

Relatively few changes were made to the configuration recommended by the Classification Process. The Management Class are unchanged (see Table 3.1). The reasons for the other changes are given in Section 2.

Also, to meet the requirements of this project, several additional nodes were added:

- six nodes were added based on the disaggregation of the Kouebokkeveld (CAPE 2009);
- four nodes were added to include E31A, F60A, F60E, G30H;
- a node was added at the outlet of quaternary E33F, which is also an outlet of the Olifants-Doring dryland farm IUA, to align RU boundaries with IUA boundaries (RU9 now represents E33G);
- RU24 was split into two RUs (i.e. two RUs were added) to align with the Compulsory Licensing Study for the Jan Dissels River (DWAF 2008), as follows:
 - RU24 (in E10H) from Boskloof to the DWA gauging weir (E1H006) at the quaternary outlet;
 - \circ Q7 (in E10J) E1H006 to confluence with Olifants.

The updated river and estuary ecological categories for the quaternaties based on the activities listed in Section 2.1 are provided in Table 4.1.

4.1 OVERARCHING IMPLICATIONS OF THE RECOMMENDED CONFIGURATION

4.1.1 Olifants-Doring Basin

The recommended configuration takes account of the dichotomy brought about by human utilisation of the area can be summarised as follows:

- Maintain the ecological integrity of the Doring River, and in so doing ensure sustainable utilisation of the Olifants estuary, i.e., no dams in the Doring or Groot Rivers.
- Maintain the ecological integrity of key tributaries on both the Olifants and Doring Rivers, thereby ensuring variability of flow, as well as provision of refuges and source areas, i.e., ensure perennial contact between tributaries and amin rivers as appropriate.
- Undertake some river rehabilitation aimed at reducing non-flow related impacts in the mainstem Olifants River between the Olifants Gorge and Clanwilliam Dam, thereby improving overall river condition in this reach.
- Undertake some river rehabilitation aimed at reducing water quality impacts in the mainstem Olifants River downstream of the confluence with the Doring River. This would also improve the quality of water entering the estuary.
- Undertake minor estuary rehabilitation measures, mainly aimed at controlling over-fishing.
- Keep Reserve releases from Clanwilliam Dam and Bulshoek Barrage to a minimum, so that water supply from Clanwilliam Dam and Bulshoek Barrage is maximised.

Note: The recommended configuration pre-supposes **no major developments in the Doring River**, as this water is required to maintain the Doring River in a good ecological condition (B-category) and maintain the C-category in the estuary.

4.1.2 Sandveld

The recommended configuration takes account of the need to redress past environmental degradation in the catchment, mainly through the control of groundwater use.

	Incremental	Cumulative		Incremental	Cumulative
E10A	С	С	E24D	AB	С
E10B	В	С	E24E	AB	AB
E10C	В	В	E24F	AB	AB
E10D	С	D	E24G	AB	AB
E10E	С	D	E24H	В	В
E10F	С	D	E24J	В	В
E10G	С	D	E24K	В	В
E10G-Rond	В	В	E24L	В	В
E10H	С	С	E24M	В	В
E10J	С	D	E31A-Q2	В	В
E10J-Q7	D	D	E31B	В	В
E10K	С	D	E31C	В	B
E21A	C	C	E31D	B	B
E21B	D	D	E31E	B	B
E21C	B	C	E31F	B	B
E210 E21D	D	D	E31G	B	B
E21E	B	B	E31H	B	B
E21E	B	B	E32A	B	B
E21G	D	D	E32B	B	B
			E32B E32C		B
E21H	B B	B B		B B	B
E21J			E32D		
E21K	B	B	E32E	B	B
E21L	B	В	E33A	В	С
E22A	В	В	E33B	В	С
E22B	В	В	E33C	С	С
E22C	AB	AB	E33D	С	С
E22D	AB	AB	E33E	С	С
E22E	В	В	E33F-Q1	D	D
E22F	В	В	E33G	С	D
E22G	В	В	E33H	В	D
E23A	AB	AB	E40A	С	С
E23B	AB	AB	E40B	С	С
E23C	AB	AB	E40C	В	С
E23D	AB	AB	E40D	В	В
E23E	AB	AB	F60A	В	В
E23F	AB	В	F60B	В	В
E23G	AB	AB	F60C	В	В
E23H	AB	AB	F60D	В	В
E23J	AB	AB	F60E	В	В
E23K	AB	В	G30A	С	С
E24A	В	В	G30B	С	С
E24B	В	В	G30C	C	C
E24C	AB	C	G30D	C	C
			G30E	C	B
			G30F	C	C
			G30G	C	C
			G30H	C	C

Table 4.1. Updated river and estuary ecological categories

5 HYDROLOGICAL RQOS - STANDARD ECOLOGICAL RESERVE DATA FOR UPDATED RECOMMENDED CONFIGURATION

Standard Ecological Reserve .tab files (Table 5.1) for updated recommended configuration are provided for the cumulative and incremental flow at the boundary of every sub-quaternary listed in Table 4.1 (see Appendix A). The corresponding .rul and .wrv files were also generated and are provided electronically.

An example of a standard Reserve data .tab file is given in Table 5.1 . The .tab files provide the annual volume of water required in millions of cubic metres (e.g. 1.045 MCM) and the percentages of the natural MAR (17.64%) of the river at that point (incrementally or cumulatively depending on the input data), and monthly volumes for the low-flow and high-flow requirements. Summary monthly values are also provided. All the relevant .tab files are provided in Appendix A.

E23E									
2000	Summar	ry of Des		ersion 2	on 2011/(?) estimat		aternary Ca	atchment Area	:
	MAR S.Dev. CV Q75 Q75/MN BFI Ir	1F	= = = = = =	1. m or 5.922 9.403 1.588 0.000 0.000 0.169 6.574	index val	lues):			
	Ecolog	gical Cat	egory =	С					
	Drough	IFR Lowflow t Lowflow Highflo	= wc	0.314 0.000	(17.64 %) (5.30 %) (0.00 %) (12.34 %)	IAR) IAR)			
		-	ibutions Type : W		cu. m.)				
	Month	Natu	ral Flows	5		ied Flow	. ,	Total Flows	
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.	
	Oct	0.095	0.305	3.212	0.007	0.000	0.000	0.007	
	Nov	0.236	0.858	3.639	0.013	0.000	0.029	0.042	
	Dec	0.303	0.896	2.953	0.016	0.000	0.038	0.054	
	Jan	0.239	0.838	3.506	0.013	0.000	0.000	0.013	
	Feb	0.150	0.701	4.675	0.009	0.000	0.000	0.009	
	Mar	0.134	0.401	2.983	0.008	0.000	0.000	0.008	
	Apr	0.513	1.590	3.098	0.027	0.000	0.064	0.090	
	May	0.756	2.017	2.668	0.039	0.000	0.094	0.133	
	Jun	1.349	4.104	3.042	0.068	0.000	0.315	0.383	
	Jul	1.347	4.118	3.057	0.069	0.000	0.094	0.163	
	Aug	0.551	1.357	2.461	0.031	0.000	0.067	0.098	
	Sep	0.248	0.893	3.594	0.015	0.000	0.030	0.045	

Table 5.1 Example of the standard Ecological Reserve .tab file data provided (See Appendix A)

Part II: Prioritisation and Resource Unit evaluation

6 PRIORITISATION OF RESOURCE UNITS

RQOs over and above the standard Ecological Reserve hydrological data are only generated for prioiry resource units/sub-quaternaries.

To facilitate the standard selection of priory resource units/sub-quaternaries, a Resource Unit Prioritisation Tool was developed (DWA 2011), which uses criteria, ratings and weights to assist in prioritization of RUs for which RQOs should be developed. Separate Resource Unit Prioritisation Tools were applied in this project for rivers and estuaries; for groundwater, and; for wetlands, as different criteria and weights are relevant to different types of systems. Adjustments were made to the Resource Unit Prioritisation Tools as described In Section 6.1. The resultant priority RUs from each were then combined to arrive at the final set of priority RUs.

The tool was not used for wetlands because the development of RQOs for wetlands was constrained entirely by the limited available data, i.e. the available data dictated the form of the RQOs (see Section 2.3). The criteria used to identify key wetland clusters for RQO purposes were:

- the conservation (FEPA) priority status assigned to the wetlands (important wetlands were identified from existing Freshwater Ecosystem Priority Area (FEPA) assessments. Nel *et al* (2011) identified several clusters of wetlands that, primarily because of their biodiversity attributes, are considered national priorities for conservation);
- the amount and level of available data to enable the development, implementation and monitoring of RQOs for these wetlands, and;
- the risks or threat to individual wetlands, which may make monitoring a priority.

6.1 ADJUSTMENTS TO THE RESOURCE UNIT PRIORITISATION TOOLS

6.1.1 Criteria

6.1.1.1 Rivers and estuaries

The criteria and rating guidelines provided in the Resource Unit Prioritisation Tool are shown in Table 6.1. These were adjusted as follows:

- Fine-scale planning sub-criterion (Criterion 4; Table 6.1) was omitted from the prioritisation because:
 - in the Olifants-Doorn WMA the fine-scale planning and FEPA coverages tend to overlap to a large extent, which results in double counting, and;
 - fine-scale planning data were not available for the whole WMA.
- Correction to the sub-criterion "RUs with PES lower than D category or lower than accepted gazetted category" (NEC; Criterion 6; Table 6.1). In the mode, the rating guidelines for a score of 0 referred to C category. It was assumed that the rating guideline should read D category, and the model was adjusted accordingly.

In addition:

- An additional rule was applied to ensure that at least one RU was selected per IUA.
- The default weights were adjusted (Figure 6.1).

No.	Criterion	Sub-criteria	Rating Guideline
1	Position of resource unit within IUA	RUs located on a large mainstem river at downstream end of an IUA (IUA outlet node)	0 - RUs not associated with keystone sites 1 – RU on mainstem river and at base of IUA
		RUs that provide important cultural services to society	 0 - RUs with no known / limited provision of cultural services 0.5 - RUs providing some cultural services 1 - RUs providing very important or numerous cultural services
		RUs that are important in supporting livelihoods of significant <u>vulnerable</u> <u>communities</u>	 0 - RUs that do not support / provide limited support for vulnerable communities 0.5 - RUs providing some support for vulnerable communities 1 - RUs playing an important role in supporting vulnerable communities
2	Importance for users (current & anticipated future use)	RUs that are important in meeting strategic requirements and international obligations	 0 -RUs not used for strategic purposes nor to meet international obligations 0.5 -RUs moderately important for strategic purposes or are somewhat useful for verifying compliance with international obligations 1 - RUs extremely important for strategic purposes or are ideally suited for verifying compliance with international obligations
		RUs that provide supporting and regulating services	 0 - RUs that supply limited supporting & regulating services 0.5 - RUs that supply moderate supporting & regulating services 1 - RUs that supply extensive supporting & regulating services
		RUs most important in supporting activities contributing to economy (GDP, job creation) in catchment (e.g. commercial agriculture, industrial abstraction, bulk abstraction by water authorities)	 0 - RUs that do not directly support any activities which contribute to economy 0.5 - RUs that support activities which provide a moderate contribution to economy 1 - RUs that support activities which contribute significantly to the economy
3	Threat posed to users	Level of threat posed to users	0 - RUs where potential threat to users is low0.5 - RUs where potential threat to users is moderate1 - RUs where potential threat to users is high
		RUs with a high or very high EIS category	0 - RUs with a low or moderate EIS Category0.5 - RUs with a high EIS Category1 - RUs with a very high EIS Category
		RUs that have an A/B NEC and / or PES	0 - RUs with a PES or NEC lower than a B Category 0.5 - RUs with a PES or NEC in a B Category 1 - RUs with a PES or NEC in an A or A/B Category
4	Ecological Importance	RUs identified as National Freshwater Ecosystem Priority Areas (FEPAs)	 0 - RUs that are not identified as a priority area 0.5 - RUs located within 'Freshwater Ecosystem Support Areas' 1 - RUs located within 'Freshwater Ecosystem Priority Areas'
		RUs identified as a priority in provincial / fine scale aquatic biodiversity plans	 0 - RUs with a low irreplaceability value (0 - 0.5) 0.5 - RUs with a moderate Irreplaceability value (0.51-0.99) or located within 'Ecological Support Areas' 1 - RUs that are irreplaceable (IR=1) or are located within 'Critical Biodiversity Areas'.

 Table 6.1
 Criteria, sub-criteria and ratings for the prioritisation of RUs (from DWA 2011).

No.	Criterion	Sub-criteria	Rating Guideline
5	Threat faced by ecological component of RU	Level of threat posed to ecological components of the RU	 0 - RUs where potential threat to ecological components is low 0.5 - RUs where potential threat to ecological components is moderate 1 - RUs where potential threat to ecological components is high
6	Management Considerations	RUs with PES lower than D or lower than accepted gazetted category (NEC)	 0 - RUs with a PES higher than a D Category or a PES higher than the NEC 1 - RUs with a PES lower than a D Category or a PES lower than the NEC
		Availability of EWR or other data (RHP, DWAF gauging weirs, etc.) located within reach?	 0 - RUs where no resource quality information exists 0.5 - RUs for which a moderate level of resource quality information exists 1 - RUs for which there is a good availability of resource quality information
7	Practical Considerations	Accessibility of RU for monitoring	0 - RUs with very poor accessibility 0.5 - RUs with moderate accessibility 1 - RUs with good accessibility
		Safety risk associated with monitoring RU	0 - RUs that are not safe to monitor 0.5 - RUs where safety is questionable 1 - RUs where safety is not a concern

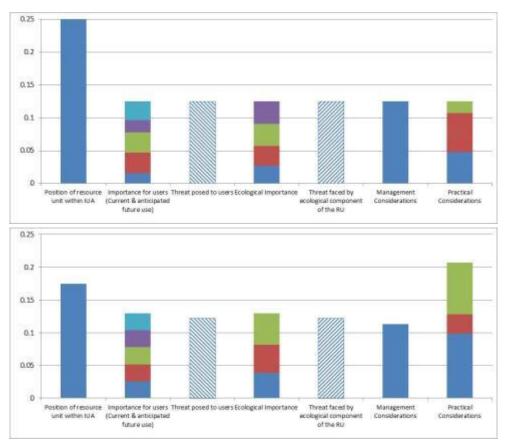


Figure 6.1 Original criteria weights provided in the RU prioritization tool (top) and adjusted weights as used for rivers in this project (bottom). The colours refer to the sub-criteria listed in Table 6.1.

6.1.1.2 Groundwater

The criteria and rating guidelines provided in the Resource Unit Prioritisation Tool were adjusted to make them more appropriate for groundwater (Table 6.2), as follows:

- **Importance for users**: Some aquifers in the WMA provide significant services for the environment and other users. The importance for users was evaluated with respect to the current and possible future use by the different water sectors. The direct or indirect contribution to other services such as regulating floods, buffering against droughts, maintaining ecological integrity etc. is covered by the surface water groundwater interaction (see below).
- Threat posed to users: Depending on the pattern and scale of groundwater abstraction as well as the land use within the resource units the different aquifers might be at risk of over-abstraction (indicated by aquifer stress and decline in water level) and or pollution (indicated by decline in water quality), both of were considered in the prioritisation. A further threat to be considered is the lack or paucity of aquifer monitoring and management. Whether the impact is measured or inferred from the landuse activities was not relevant for the scoring.
- **Practical considerations**: RQOs can only be implemented and enforced if they can be measured. Hence, the focus was on identifying resource units with a sufficient groundwater monitoring network and existing baseline data to allow for comparison with data collected in the future.
- Level of surface water groundwater interaction: Depending on the aquifer type and its interaction with surface water bodies it has greater or lesser relevance for maintaining the hydrological integrity and water quality of the ecosystem. The aquifer types occurring in the RU and their contribution to surface water lowflows were considered, as these could impact on possible management options.

Criterion	Weight	Sub-criteria	Weight	Rating guidelines
Importance for		RUs that are important in supporting livelihoods of significant <u>vulnerable</u> <u>communities</u>	50	 0 – RUs that do not support / provide limited support for vulnerable communities 0.5 – RUs providing some support for vulnerable communities 1 – RUs playing an important role in supporting vulnerable communities
users (current and anticipated future use)	20	RUs most important in supporting activities contributing to economy (GDP, job creation) in catchment (e.g. agricultural or industrial abstraction, bulk abstraction by water authorities)	50	 0 – RUs that do not directly support any activities which contribute to economy 0.5 – RUs that support activities which provide a moderate contribution to economy 1 – RUs that support activities which contribute significantly to the economy
		Medium to Long-term decline in natural water or piezometric levels	20	0 - RUs where potential threat to users is low 0.5 - RUs where potential threat to users is moderate 1 - RUs where potential threat to users is high
Threat posed to users	30	Medium to Long-term decline in natural water quality	20	0 - RUs where potential threat to users is low 0.5 - RUs where potential threat to users is moderate 1 - RUs where potential threat to users is high
		Paucity of monitoring and management system	40	0 - RUs where potential threat to users is low 0.5 - RUs where potential threat to users is moderate 1 - RUs where potential threat to users is high

Table 6.2Criteria and sub-criteria for the prioritisation of RUs, considering the groundwater aspect
(adapted from DWA 2011).

Criterion	Weight	Sub-criteria	Weight	Rating guidelines									
Practical		Availability of water quality monitoring data (WMS monitoring boreholes) located within RU?	20	 0 – RUs where no resource quality information exists 0.5 – RUs for which a moderate level of resource quality information exists 1 – RUs for which there is a good availability of resource quality information 									
Considerations	50	Availability of water level monitoring data (DWA monitoring boreholes) located within RU?	20	 0 – RUs where no resource quality information exists 0.5 – RUs for which a moderate level of resource quality information exists 1 – RUs for which there is a good availability of resource quality information 									
		Relevance of groundwater contribution to maintain required low flow conditions	40	 0 – RUs without relevant groundwater contribution 0.5 – RUs where groundwater contribution supports low flow condition 1 – RUs where groundwater contribution is crucial to maintain low flow condition 									
	40	Relevance of groundwater contribution to maintain required water quality	30	 0 – RUs without relevant groundwater contribution 0.5 – RUs where groundwater contribution supports water quality during low flow condition 1 – RUs where groundwater contribution is crucial to maintain good water quality during low flow condition 									
Level of surface water – groundwater		40	40	40	40	40	40	40	40	40	40	Alluvial aquifer associated with main stem rivers with short residence time	10
interaction		Primary aquifer not associated with main stem rivers	10	 0 – RUs without primary aquifer outside the mainstem 0.5 – RUs with small primary aquifer, not associated with mainstem 1 – RUs with significant primary aquifer, not associated with mainstem 									
		Fractured aquifer with long residence time (>2 years) prior to groundwater discharge	10	 0 – RUs without fractured rock aquifer 0.5 – RUs with fractured rock aquifer of medium size 1 – RUs with large, fractured rock aquifer, straddling several RUs 									

6.2 **PRIORITISATION**

The final list of priority RUs is provided in Table 6.3 and comprises:

- 13 river RUs;
- two estuary RUs;
- eight groundwater RUs;
- two wetland clusters in three quaternary catchments (E32E; E40C, and; G30H).

A total of 26 priority RUs were selected for developing detailed RQOs (Table 6.3) as there was some overlap between RUs selected for rivers, groundwater and wetlands. The application of the updated Resource Unit Prioritisation Tool and the resulting prioritisation are documented in Appendix C.

IUA	No.	Quaternary	Ground-water		Surface water	Priority RUs		
	INU.	catchment	Resource Unit	River Node	River	SW	GW	Wetlands
Lower Olifants Irrigation	1	E33H	7	Е	Olifants Estuary	x		
	2	E10K	13	R13	Olifants	x		
	3	E10J	23	R23	Olifants	x		
	4	E10H	24	R24	Jan Dissel	x		
Upper Olifants Irrigation	5	E10G	34	R34	Olifants / Rondegat	х		
	6	E10E	33	R33	Olifants	~	x	
	7	E10F	33	КЭЭ	Olliants	х	X	
	8	E10D	40	R40	Olifants		х	
	9	E24M	14	R14	Doring	х		
Olifants - Doring	10	E40D	17	R17	Koebee	х		
Dryland Farming	11	E40C	11	R11	Oorlogskloof			X ³
	12	E33F	Q1	Q1	Droe / Troe-troe		x	
	13	E21K	07	D07	Matjies	x		
Kaus Dabbaushi	14	E21L	37	R37	Groot			
Koue Bokkeveld	15	E21H (part)	(portion of 38)	A1	Twee	х		
	16	E21G	41	41	Leeu	x	х	
Doring Rangelands	17	E23K	27	R27	Tankwa	х		
	18	E33C			Vars			
Ka ana dalata	19	E33D	8	R8	Geelbek			
Knersvlakte	20	E33E			Hol	x		
	21	E32E	3	R3	Doring(b) ⁴			X ²
	22	G30D	53	R53	Verlorevlei		х	
	23	G30E	52	R52	Verlorevlei / Verlorenvlei estuary	x	x	
Sandveld	24	G30F	56	R56	Langvlei	x	х	
	25	G30G	57	R57	Jakkals		х	
	26	G30H	Q5	Q5	Sandlaagte			Х

Priority RUs selected for development of detailed RQOs Table 6.3

The locations of the priority RUs for the Olifants-Doorn WMA are shown in Figure 6.2.

³ The Nieuwoudtville wetlands extend over these two quaternary catchments / RUs, but are dealt with as a single entity in Part III. ⁴ Doring(b) refers to a different Doring to the main Doring River, which flows to the east of the Cedarberg Mountains.

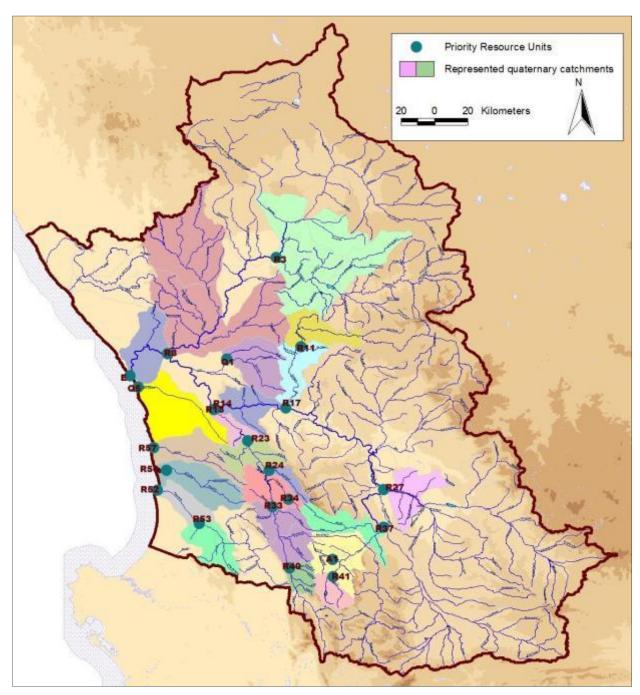


Figure 6.2 Olifants-Doorn WMA: Priority Resource Units

7 RESOURCE UNIT EVALUATION

7.1 RQO-RELATED INFORMATION AVAILABLE FOR RUS

The information for developing RQOs is patchy and spatially uneven for non-hydrological RQOs in rivers, and for groundwater and wetlands. This has implications for the detail at which some of the RQOs could be presented. In addition, there are some areas where the outcomes of the Classification project were insufficiently resolved for the RQOs to be developed without additional field work, data analysis and ground-truthing, which were outside the ToR for this project.

7.2 RESOURCE UNIT EVALUATION TOOL

The Resource Unit Evaluation Tool (DWA 2011) was used to decide which RQOs were relevant within each of the prioritised RUs. The options for RQOs as listed in the Resource Unit Evaluation Tool are shown in Table 7.1. The detailed steps of the Resource Unit Evaluation Tool per RU are documented in Appendix D (Data CD).

	Rivers		Wetlands		Estuaries
Quantity	Low Flows (Maintenance Flows)	Quantity	Water inputs	Quantity	Low Flows
Quantity	High Flows (Floods)	Quantity	Water distribution and retention patterns	Quantity	High Flows (Floods)
	Nutrients		Nutrients	Hydro-	Mouth Condition
	Salts		Salts	dynamics	Abiotic states
	System variables		System variables		Salinity
Quality	Toxics	Quality	Toxics		Dissolved inorganic nitrogen
-	Pathogens		Pathogens		Dissolved inorganic phosphate
Liek Het	Instream habitat	Geomorphology		Quality	Water clarity
Habitat	Riparian Habitat	Habitat	Wetland Vegetation		Dissolved oxygen
	Fish		Fish		Toxic substances
	Aquatic & riparian plant species		Plant species		Pathogens
	Mammals		Mammals	Dhysical	Intertidal
Biota	Birds	Biota	Birds	Physical Habitat	Subtidal
	Amphibians & reptiles		Amphibians & reptiles	Tiabilat	Substrate type
	Periphyton		Periphyton		Microalgae
	Aquatic Invertebrates		Aquatic Invertebrates		Macrophytes
	Diatoms		Diatoms	Biota	Invertebrates
					Fish
					Birds

Table 7.1 RQOs listed in the Resource Unit Evaluation Tool (DWA 2011)

7.2.1 Rivers

Fifteen river reaches and the estuary were assessed using the Resource Unit Evaluation Tool. This resulted in the selection of the RQOs listed in Table 7.2.

Node	Quat.	River	Low Flows (Maintenance)	High Flows	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant s	Mammals	Birds	Amphibians & reptiles	Periphyton	Aquatic Invertebrates	Diatoms
E	E33H	Estuary	Y	Y	Y	Y	Y					Y	Y		Y		Y	Y	
R13	E10K	Olifants	Y	Y	Y	Y	Y			Y		Y	Y					Y	
R23	E10J	Olifants	Y	Y	Υ	Y	Υ					Y							
R24	E10H	Jan Dissels	Y	Y	Y	Y	Y			Y		Y	Y					Y	
R34	E10G	Rondegat	Y	Y	Y	Y	Y			Y		Y	Y					Y	
R33	(E10E), E10F	Olifants	Y	Y	Y	Y	Y			Y		Y	Y					Y	
R40	E10D	Olifants										Y							
R14	E24M	Doring	Y	Y	Y	Y	Y			Y		Y	Y					Y	
R17	E40D	Koebee	Y									Y					,		
R37	E21K, E21L	Groot	Y	Y	Y	Y	Y			Y		Y	Y					Y	
A1	E21H	Twee	Y																
R41	E21G	Leeu	Y	Y	Y	Y	Y					Y						Y	
R27	E23K	Tankwa		Y															
R8	E33C, E33D	Hol		Y															
R52	G30E	Verlorenvlei	Y	Y	Y	Y		Y	Y			Y	Y		Y			Y	
R56	G30F	Langvlei	Y	Y									Y		Y			Y	

Table 7.2	Summary of RQOs selected for the river priority RUs
l able 7.2	Summary of RQOs selected for the river priority RUs

7.2.2 Groundwater

The Resource Unit Evaluation Tool was amended for groundwater RUs. The relevant RQOs / parameters used were:

Quantity: recharge, discharge, water level, available yield

Quality: nutrients, salt, non-organic toxics, organic toxics, pathogens.

An assessment for the eight groundwater RUs resulted in the RQOs shown in Table 7.3.

RU	Quaternary Catchment	Aquifer	Recharge	Discharge	Nutrients	Salts	Inorganic toxics	Organic toxics	Pathogens	Water level	Available yield
40	E10D	Alluvium		Y	Y	Y			Y		Y
		TMG			Y	Y			Y		Y
33	E10E & E10F	Alluvium		Y	Y	Y			Y		Y
		TMG		Y	Y	Y			Y		Y
41	E21G	Bokkeveld		Y	Y	Y			Y		Y
		TMG			Y	Y			Y		Y
	E33F	Gifberg			Y	Y			Y		Y
53	G30D	Sandveld		Y	Y	Y			Y		Y
52	G30E	Sandveld		Y	Y	Y			Y	Y	Y
56	G30F	Sandveld		Y	Y	Y			Y	Y	Y
57	G30G	Sandveld		Y	Y	Y			Y	Y	Y

 Table 7.3
 Summary of the RQOs selected for groundwater priority RUs

Part III: Resource Quality Objectives for Priority RUs

8 SUMMARY OF PRIORITY RUS

Basic hydrological RQOs have been provided for every quaternary in the WMA (see Appenidx A). This section provides additional hydrological detail plus physico-chemical and biological RQOs where applicable and possible. It also provides groundwater and wetland RQOs where applicable and possible, and Threshholds of Potential Concern (TPCs) where available. The 22 RUs selected as priorities for RQO specification are listed in Table 8.1. Although it is desirable to have detailed RQOs for all of the quaternaries listed in Table 8.1, as they include the outlets for all the IUAs, it is not possible to set them for each RU, because there are no data that can be used for the following RUs:

- Hol River in E33E (R8) outlet of Knersvlakte IUA.
- Tankwa River in E23K (R27) outlet of Doring Rangelands IUA.
- Groot/Twee Rivers E21H, E21J (R31/A1) outlet of Koebokkeveld IUA.

Table 8.1RUs selected as priorities for RQO specification. IUAs arranged from downstream to
upstream. * = not possible to set detailed RQOs, na=not applicable (see Table 6.3).
Showing RQOs provided for each, excluding hydrology.

IUA	Quat	NODE	River		RQOs provided for	
IUA	Quai	NODL	River	SW	GW	Wetlands
Lower Olifants Irrigation	E33H	E	Olifants Estuary	Water quality Geomorphology Riparian vegetation Macronvertebrates Fish	na	na
	E10K	R13	Olifants	Water quality Geomorphology Riparian vegetation Macronvertebrates Fish	na	na
	E10J	R23	Olifants	Water quality Fish	na	na
Upper	E10H	R24	Jan Dissel	Water quality Geomorphology Riparian vegetation Macronvertebrates Fish	na	na
Olifants Irrigation	E10G	R34	Rondegat	Water quality Geomorphology Riparian vegetation Macronvertebrates Fish	na	na
	E10E			Water quality	Alluvium Aquifer	
	E10F	R33	Olifants	Geomorphology Riparian vegetation Macronvertebrates Fish	(quantity and quality) TMG Aquifer (quantity and quality)	na
	E10D	R40	Olifants	Fish	Alluvium Aquifer (quantity and quality) TMG Aquifer (quantity and quality)	na
Olifants/ Doring	E24M	R14	Doring	Water quality Geomorphology Riparian vegetation Macronvertebrates Fish	na	na
Dryland	E40D	R17	Koebee	Fish	na	na
	E40C	R11	Oorlogskloof	na	na	Wetland extent
	E33F	Q1	Troe-Troe	na	Gifberg Aquifer (quantity and quality)	na

IUA	Quat	NODE	River		RQOs provided for	
IUA	Quat	NODE	River	SW	GW	Wetlands
	E21K	R37	Matjies	Water quality Geomorphology Riparian vegetation Macronvertebrates	na	na
Koue	E21L		Groot	Fish	na	na
Bokkeveld	E21H	R38 / A1	Twee	None	na	na
Donatovola	E21J	K30 / A1	Groot	None	na	na
	E21G	R41	Leeu	Water quality Fish	Alluivium and Bokkeveld (quantity and quality) TMG Aquifer (quantity and quality)	na
Doring Rangelands	E23K	R27*	Tankwa	None	na	na
	E33C		Vars		na	na
Knersvlakte	E33D	R8*	Geelbek	None	na	na
MIEISVIANIE	E33E		Hol		na	na
	E32E	R3	Doring(b) ¹	na	na	Wetland extent
	G30D	R53	Verlorevlei	Water quality Fish	Alluvium Aquifer (quantity and quality)	na
	G30E	R52*	Verlorevlei / Verlorenvlei estuary	Water quality Periphyton Fish Birds	Alluvium Aquifer (quantity, quality and water level)	na
Sandveld	G30F	R56*	Langvlei	Fish Birds	Alluvium Aquifer (quantity, quality and water level)	na
	G30G	R57	Jakkals	na	Alluvium Aquifer (quantity, quality and water level)	na
	G30H	Q5	Sandlaagte	na	na	Wetland extent

8.1 SUMMARY OF KEY HYDROLOGICAL AND NARRATIVE RQOS FOR PRIORITY RUS

The key hydrological and narrative RQOs for the priority RUs are summarised as follows:

Rivers:	Hydrological (Table 8.2)
	Narrative (Table 8.3)
Estuaries and vleis:	Hydrological (Table 8.4)
	Narrative (Table 8.5)
Groundwater:	Hydrological (see Appendix B)
	Narrative (Table 8.6).

 Table 8.2
 Summary of key hydrological RQOs for RIVERS in priority RUs in the Olifants-Doorn WMA

				Leastless for		logical egory	RQO hydrology								
IUA	Quat	Node	River	Location for monitoring		Target	Visual (lowflows)	Month with lowest flow	Mean of month with lowest flow (m ³ /s)	Instantaneous drought absolute minimum (m ³ /s) ⁵	%nMAR (DWA 2013)	Floods in addition to Desktop Model (DWA 2013)	Implications of flood RQOs		
	E10K	R 13	Olifants	E1R001/ EWR Site 2	Е	D	Visible summer flow	February	0.200	0.050	9.3	-	None		
	E10J ⁶	R 23	Olifants	E1H016	D	D	Strong summer flow	February	E10J because the used as a cor Clanwilliam Dam. 0.02 m ³ /s has	s for lowflows are no e Olifants River in the nduit for irrigation re However, an absol been set as to prote gation releases are r	his quaternary is leases from lute minimum of ct the river in	-	None		
		R 24		Above causeway	В	В	Strong summer flow	February	n/a	0.01	n/a	-	None		
		17 24	las Dias I	Causeway to E1H006	С	С	Visible summer flow		0.060	0.01	19.7	-	None		
Upper Olifants Irrigation	E10H	Q7 (in E10J)	Jan Dissel	E1H006 to confluence	D	D	No-flow conditions limited to February and March	February and March	0	0	n/a	-	None		
	E10G	R 34	Rondegat	EWR Site 3	С	В	Strong summer flow	February	0.020	0.001	42.7	-	None		
	E10E/ E10F	R 33	Olifants	E1H013/ EWR Site 1	D	D	Visible summer flow	February	0.110	0.003	37.8	-	None		
	E10D	R 40	Olifants	E1H013	D	D	Visible summer flow	February	0.070	0.002	37.8	>60% of natural floods for July, August and September	Limited in-channel dams		
	E10C	R42	Olifants	-	В	В	Visible summer flow	February	0.030	0.002	36.6	>60% of natural floods for July, August and September	Limited in-channel dams		

⁵ In some cases the .rul files show zero flow for drought, but these rivers are historically perennial, so a lowflow value for drought has been provided. 6 The lower portion of the Jan Dissels River falls in the quaternary, but is discussed under E10H.

				have the star		logical tegory	RQO hydrology									
IUA	Quat	Node	River	Location for monitoring		Target	Visual (lowflows)	Month with lowest flow	Mean of month with lowest flow (m ³ /s)	Instantaneous drought absolute minimum (m ³ /s) ⁵	%nMAR (DWA 2013)	Floods in addition to Desktop Model (DWA 2013)	Implications of flood RQOs			
	E24M	R 14	Doring	E2H003	В	В	No-flow conditions limited to December to April	February	0	0	48.5	>80% of natural floods for July, August and September	No in-channel dams			
Olifants/	E40D	R 17	Koebee	Koebee	В	В	Visible summer flow	February	0.030	0.001	26.5	>80% of natural floods for July, August and September	No in-channel dams			
Doring Dryland	E40C	R 11	Oorlogskloof	Upstream of Oorlogskloof Nature Reserve (ONR)	D	с	Visible	February	0.002	0.001	17.7	>80% of natural floods for July, August and	No in-channel			
	2400			In ONR (Brakwater: -31° 27' 52.3368", 19° 4' 51.3192")	В	с	summer flow	rebruary	0.002	0.001	17.7	September	dams			
	E33F	Q1	Troe-Troe	E3H001	D	D	No flow in summer	February	0	0	11.2	-	None			
	E21K	-R 37	Matjies	Matjies	в	В	Visible summer flow	December/ January	0.005	No .rul	60.4	>80% of natural floods for July, August and September	No in-channel dams			
	E21L	- R 37	Groot	E2H002	в	C/B	Visible summer flow	February	0.017	0.001	48.1	>80% of natural floods for July, August and September	No in-channel dams			
Koue	E21J	R38	Groot	EWR Site 6	В	В	Visible summer flow	February	0.010	0.001	48.1	>80% of natural floods for July, August and September	No in-channel dams			
Bokkeveld	LZIJ	-	Gloot	Brandkraals	В	В	Visible summer flow	February	-	0.001	48.1	>80% of natural floods for July, August and September	No in-channel dams			
	Tributary to E21H	A1	Twee	Twee	в	В	Visible summer flow	February	0.125	0.001	60.4	>80% of natural floods for July, August and September	No in-channel dams			
	E21G	R 41	Leeu	E2H007	D	D	Visible summer flow	February	0.010	0.001	13.2	>60% of natural floods for July, August and September	Limited in-channel dams			

				Location for		logical egory	RQO Hydrology								
IUA	Quat	Node	River	monitoring	PES	Target	Visual (lowflows)	Month with lowest flow	Mean of month with lowest flow (m ³ /s)	Instantaneous drought absolute minimum (m ³ /s) ⁵	%nMAR (DWA 2013)	July, August and September - - - -	Implications of flood RQOs		
Doring Rangelands	E23K	R27	Tankwa	Tankwa	В	В	The Tankwa Ri	ver is ephen	neral. Thus minim apply.	um lowflows do not	26.4		No in-channel dams		
	E33C		Vars		D	С	The Viere (Coolbok and	Hal Divara ara an	homoral Thus	17.0	-	None		
	E33D	R8	Geelbek	None	С	С	The vars, o		Hol Rivers are ep owflows do not app		17.1	-	None		
Knersvlakte	E33E		Hol		С	С			millions do not app	лу.	17.4	-	None		
	E32E	R 3	Doring(b) ⁷	None	В	В	The Doring(b)		emeral. Thus min not apply.	imum lowflows do	26.2	-	None		
	G30D	R 53	Verlorevlei	G3H001	D	С	Visible summer flow	March	0.019	0.001	20.7		Limited in-channel dams		
Sandveld	G30F	R56	Langvlei	River Node R56: 32°12'40.05"S, 18°23'8.25"E / Upstream of the Wadrif Pan and Wetland	D	С	Visible summer flow	March	0.010	0.001	19.3	-	None		
	G30G	R 57	Jakkals	River	D	С	Visible flow in November	March	0.005	0.001	19.2	-	None		

⁷ Different river from the main Doring River.

Table 8.3 Summary of the narrative RQOs for RIVERS in priority RUs in the Olifants-Doorn WMA. TWQR = Target Water Quality Range (DWAF 1996); Fitness for use = FFU (DWAF 1996b).

IUA	Quat	Node	River	Location for monitoring	WQ	Geomorphology	Riparian vegetation	Macronvertebrates	Fish
	E10K	R 13	Olifants	E1R001/ EWR Site 2	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	Abundance and diversity of habitats should be equal to or greater than those measured in 2005.	Dominated by indigenous species. No Sesbania punicea and only isolated individuals of Acacia longifolia, A. mearnsii, A. melanoxylon, Eucalyptus camaldulensis. No Azolla filiculoides, Lemna gibba or other aquatic weeds	The abundance and diversity shall be equal to or greater than those measured in 2005	No RQOs set for indigenous fish. The abundance and diversity of alien fish shall be equal to or greater than those measured in 2005.
	E10J	R 23	Olifants	E1H016	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	-
				Above causeway			Dominated by indigenous		At least three of the following species should be present in
Upper Olifants Irrigation	E10H	R 24	Jan Dissel	Causeway to E1H006	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	Riffle-run sequence, with aquatic vegetation and stones in current.	species. No Sesbania punicea and only isolated individuals of Acacia longifolia, A. mearnsii, A. melanoxylon, Eucalyptus camaldulensis. No Azolla filiculoides, Lemna gibba or other aquatic weeds.		the catch: Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus should be present. There should be no alien species present
				E1H006 to confluence		-	other aqualic weeds.	-	-
	E10G	R 34	Rondegat	EWR Site 3	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	Riffle-run sequence, with aquatic vegetation and stones in current.	The indigenous riparian vegetation should be intact with no aliens	Dominated by sensitive mountain stream taxa.	At least three of the following species should be present in the catch: Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus should be present. There should be no alien species present.
	E10E/ E10F	R 33	Olifants	E1H013/ EWR Site 1	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	Riffle-run sequence, with aquatic vegetation and stones in current.	Dominated by indigenous species. No Sesbania punicea and only isolated individuals of Acacia longifolia, A. mearnsii, A. melanoxylon, Eucalyptus camaldulensis.	Community should be representative of a slightly impacted Western Cape foothill river.	<i>Labeobarbus capensis</i> should be present.

IUA	Quat	Node	River	Location for monitoring	WQ	Geomorphology	Riparian vegetation	Macronvertebrates	Fish
Upper Olifants	E10C	R42	Olifants	-	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	<i>Labeobarbus capensis</i> should be present.
Irrigation (cont.)	E10D	R 40	Olifants	E1H013	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	<i>Labeobarbus capensis</i> should be present.
	E24M	R 14	Doring	E2H003	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a)	Riffle/run-pool sequence, with deep pools.	Dominated nby indigenous species. The presence of Nerium oleander must be strictly controlled.	Community should be dominated by Ephemeroptera, Trichoptera.	At least one of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> , <i>Barbus serra</i> and <i>Labeo seeberi</i> .
Olifants/	E40D	R 17	Koebee	Koebee	-	-	-	-	At least one of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> , <i>Barbus serra</i> and <i>Labeo seeberi</i> .
Doring Dryland	E40C	R 11	Oorlogokloof	Upstream of Oorlogskloof Nature Reserve (ONR)	-	-	-	-	-
	E40C		Oorlogskloof	In ONR (Brakwater: - 31° 27' 52.3368", 19° 4' 51.3192")	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	At least three of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> , <i>Barbus serra</i> , <i>Barbus</i> <i>anoplus</i> and <i>Labeo seeberi</i> .
	E33F	Q1	Troe-Troe	E3H001	-	-	-	-	-
	E21K	E33F Q1 Troe-Troe E3H001 E21K Matjies Matjies R 37 R 37		Matjies	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	At least one of Labeobarbus capensis, Barbus calidus, Pseudobarbus phlegethon, Barbus serra, Labeo seeberi should be present.
Koue Bokkeveld E:	E21L			E2H002	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	A riffle/run-pool sequence should be present at all flows.	Riparian vegetation should be intact and dominated by indigenous species. The presence of <i>Nerium</i> <i>oleander</i> should be strictly controlled. There should be no other alien species present.	Community should be dominated by Ephemeroptera, Trichoptera	At least one of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> , <i>Barbus serra</i> and <i>Labeo seeberi</i> .

IUA	Quat	Node	River	Location for monitoring	WQ	Geomorphology	Riparian vegetation	Macronvertebrates	Fish
	Tributary of Leeu in E21H	R38/ A1	Twee	Twee	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	At least one of Labeobarbus capensis, Barbus calidus, Pseudobarbus phlegethon, Barbus serra, Labeo seeberi should be present.
Koue Bokkeveld (cont.)	E21J	R38 / A1	Groot	EWR Site 6	Oligotrophic and should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWAF 1996b).	A riffle/run-pool sequence should be present at all flows.	Riparian vegetation should be intact and dominated by indigenous species. The presence of <i>Nerium</i> <i>oleander</i> should be strictly controlled. There should be no other alien species present.	Community should be dominated by Ephemeroptera, Trichoptera	At least one of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> , <i>Barbus serra</i> and <i>Labeo seeberi</i> .
				Brandkraals	Oligotrophic and should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWAF 1996b).	-	-	-	At least one of Labeobarbus capensis, Barbus calidus, Pseudobarbus phlegethon, Barbus serra, Labeo seeberi should be present.
	E21G	6 R 41 Leeu E2H007		E2H007	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a) and the Fitness for use - Class I for agricultural use (DWAF 1996b).	-	-	-	At least one of the following species should be present in the catch: <i>Labeobarbus</i> <i>capensis</i> and <i>Galaxias</i> <i>zebratus</i> .
Doring Rangelands	E23K	R27*	Tankwa	Tankwa	-	-	-	-	-
Knersvlakte	E33C E33D E33E	R8*	Vars Geelbek Hol	None	-			-	-
	E33E E32E	R 3	Doring(b) ¹	None	-	-	-	-	
	G30D	R 53	Verlorevlei	G3H001	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a)	-	-	-	Indigenous species should dominate and <i>Pseudobarbus</i> <i>burgi</i> (Verlorenvlei), <i>Galaxias</i> <i>zebratus</i> and <i>Sandelia capensis</i> should be present.
Sandveld C	G30F	R56*	Langvlei		Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a)	-	-	-	Indigenous species should dominate and <i>Pseudobarbus</i> <i>burgi</i> (Verlorenvlei), <i>Galaxias</i> <i>zebratus</i> and <i>Sandelia capensis</i> should be present.
	G30G	R 57	Jakkals	River	Should comply with the TWQRs for aquatic ecosystems (DWAF 1996a)	-	-	-	-

Table 8.4 Summary of key hydrological RQOs for ESTUARIES AND VLEIS in priority RUs in the Olifants-Doorn WMA

IUA	Quat	NODE	NODE Waterbody Ecological Waterbody PES Targe				Hydrology						
IUA	Qual	NODE			Target	Visual (lowflows)	Month with lowest flow	Mean of month with lowest flow (m3/s)	Instantaneous drought absolute minimum (m3/s)	Floods in addition to Desktop Model (DWA 2013)	%nMAR		
Lower Olifants Irrigation	E33H	Е	Olifants Estuary	С	С	Visible summer flow into the estuary from the river	April	1.23	0.01	Doring River floods unimpeded by large dams	57.6		
	G30E	R52	Verlorenvlei	В	В	Visible summer flow into the estuary from the river	March	0.29	0.04	>60% of natural floods for July, August and September	46.0		
	G30F	R56*	Wadrift wetlands	D	С	Visible summer flow into the wetlands from the river	March	-	-	>60% of natural floods for July, August and September	14.8		
Sandveld	GSUF	K30	Wadrift saltpan	D	С	Visible summer flow into the wetlands from the river	March	-	-	>60% of natural floods for July, August and September	37.7		
	G30G	R 57	Jakkals	С	С	Visable summer flow into the pan from the river every one in two years	March	0.03	0.006	>60% of natural floods for July, August and September	19.2		
	G30H	Q5	Sandlaagte	С	С	Visable summer flow into the estuary from the river every one in two years	March	0.02	-	>60% of natural floods for July, August and September	12.8		

Table 8.5 Summary of the narrative RQOs for ESTUARIES, VLEIS and WETLANDS in priority RUs in the Olifants-Doorn WMA

IUA	Quat	Waterbody	General conditions	WQ	Vegetation	Invertebrates	Fish	Amphibians	Birds
Lower Olifants Irrigation	ЕЗЗН	Olifants Estuary	No major water resource developments in the Doring River (provision of the Reserve alone in the Doring River will be insufficient to maintain the ecological integrity of the Doring River in a B- category and estuary in a C-category).	Shall not deteriorate from that measured in 2004.	The diversity and extent of indigenous macrophytes shall equal that measured in summer 2004. The extent of invasive waterweeds and nuisance filamentous algae shall be less relative to summer 2004. Microalgae should be dominated by flagellates. Phytoplankton and blue- green algal growth should be limited.	The polychaete worm species <i>Capitella capitata</i> should not dominate the invertebrate fauna.	The fish fauna should be dominated by estuarine and partially estuarine dependent species, and should include a significant number of 0-1 year old fish, with no age classes missing.	-	The abundance and diversity of birds shall be equal to or greater than those measured summer 2004.
Olifants-Doring dryland farming & Knersvlakte	E40C & E32E	Nieuwoudtville wetlands (Oorlogskloof, Grasberg, Soetfontein and other rivers)	No expansion of agriculture or other landuses in to the remaining intact wetland areas (around 3000 ha taken together).	-	No further encroachment of woody alien vegetation into wetland areas and no change in WET-Health scores	-	-	-	-
	G30E	Verlorenvlei / Verlorenvlei estuary	Mouth should open for an extended period from winter through into spring.	Shall not deteriorate from that measured prior to 2010.	Macrophytes, micro- and macro- algae community structure should not deteriorate from that measured in 2009.	-	The population should be dominated by indigenous species.	The Cape dainty frog (<i>Cacoster- num capense</i>) should continue to occur.	The abundance and diversity of birds shall be equal to or greater than those measured prior to 2010.
	G30F	Wadrift wetlands	There should be no expansion of agriculture or other landuses in to remaining intact wetland areas.	-	The wetlands should remain intact and the extent of invasion by woody alien plants should not increase.	-	Galaxias zebratus and Sandelia capensis should be present.	-	The abundance and diversity shall be equal to or greater than those measured prior to 2010.
Sandveld		Wadrift saltpan	-	-	-	-	-	-	-
	G30G	Jakkals	There should be no expansion of agriculture or other landuses in to remaining intact wetland areas.	-	-	-	-	-	-
	G30H	Sandlaagte	There should be no expansion of agriculture or other landuses in to remaining intact wetland areas (around 678 ha taken together).	-	-	-	-	-	-

RU	Quaternary	Aquifer	PS		Hydrology		١	Water Quality	1
RU	Catchment	Aquilei	F3	Discharge	Water level	Available yield	Nutrients	Salts	Pathogens
40	E10D	Alluvium	A	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Compliance to the lowflow requirements in the river as per Reserve requirement	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background. Fitness for use accordance wit treatment	for domestic u	ise in
		TMG A		Not sufficient data	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background.	orate from nat	ural
33	E10E & E10F	Alluvium	В	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Compliance to the lowflow requirements in the river as per Reserve requirement	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background. Fitness for use accordance wit treatment	for domestic u	ise in
		TMG	В	Not sufficient data	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background.	orate from nat	ural
41	E21G	Bokkeveld	С	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Compliance to the lowflow requirements in the river as per Reserve requirement	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background. Fitness for use accordance wit treatment	for domestic u	ise in
		TMG	В	Not sufficient data	Not applicable	All users comply with the allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background.	orate from nat	ural

Table 8.6 Summary of narrative RQOs for GROUNDWATER in priority RUs in the Olifants-Doorn WMA

RU	Quaternary	Aquifor	PS		Hydrology			Water Quality	/
RU	Catchment	Aquifer	P5	Discharge Water level Available yield		Available yield	Nutrients	Salts	Pathogens
Q1	E33F	Gifberg	E	Not applicable	Not applicable	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteriorate from natural background.		ural
53	G30D	Sandveld	D	Compliance to the lowflow requirements in the river as per Reserve requirement	Not applicable	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	background. Fitness for use	Fitness for use for domestic use in accordance with SANS 241:2011, after	
52	G30E	Sandveld	F	Compliance to the lowflow requirements in the river as per Reserve requirement	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	background. Fitness for use	Fitness for use for domestic use in accordance with SANS 241:2011, after	
56	G30F	Sandveld	F	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Compliance to the lowflow requirements in the river as per Reserve requirement	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background. Fitness for use accordance wit treatment	for domestic u	se in
57	G30G	Sandveld	D	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Compliance to the lowflow requirements in the river as per Reserve requirement	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	Shall not deteri background. Fitness for use accordance wit treatment	for domestic u	se in

9 E33H (E) RESOURCE QUALITY OBJECTIVES

9.1 UPDATED RESOURCE CLASSIFICATION

Quatarpary		Target	get Ecological Categories			
Quaternary	Mainstem		Key tributari	es	Wetlands	
E33H	Olifants (upstream of estuary)	D	Droekraal se	D	wetland area 1.9% of	
ESSH	Olifants River Estuary	С			quaternary, 13% in AB	

9.2 OLIFANTS RIVER ESTUARY IN E33H

Key monitoring points for the Olifants River Estuary in E33H:

- E3H004 (Olifants River at Lutzville; Figure 9.1).
- Estuary (2006; Box 9.1), as specified for various components.

RQOs, thresholds of potential concern (TPC) and methods are taken from DWAF (2006b).

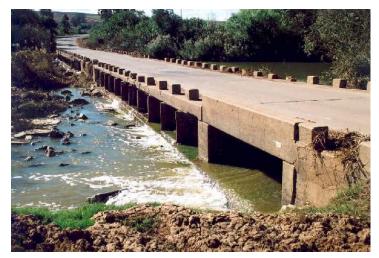
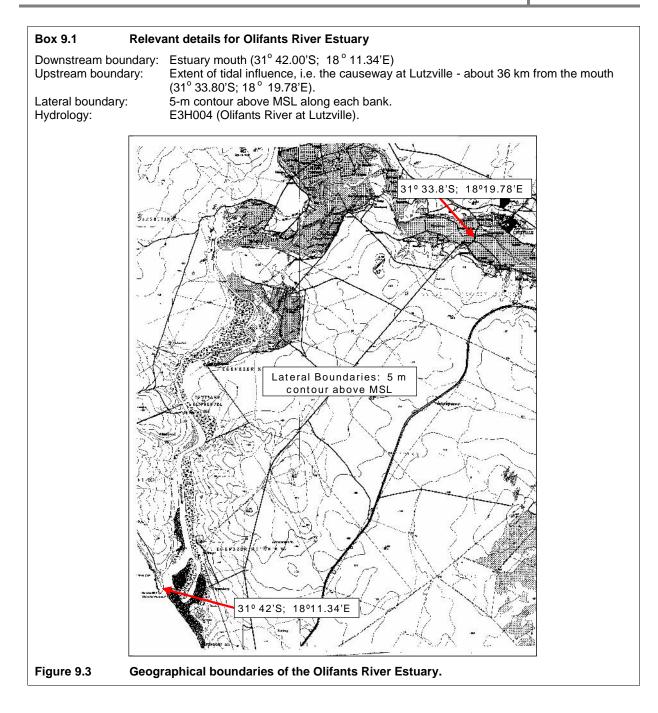



Figure 9.1 E3H004 on the Olifants River at Lutzville

Figure 9.2 Olifants River Estuary

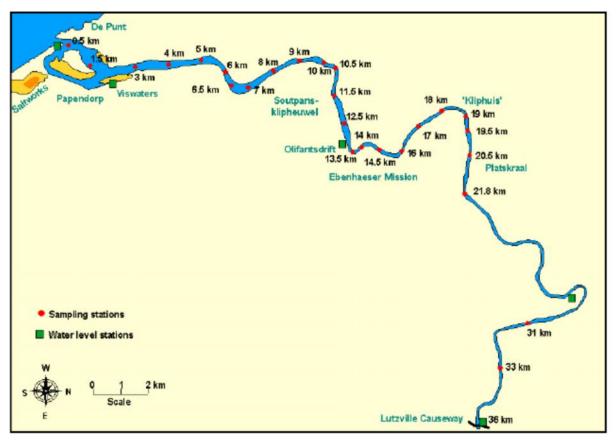


Figure 9.4 Map showing sampling locations in the Olifants Estuary (from DWAF 2006b).

9.2.1 Hydrology

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants Estuary.
Monitor at:	E3H004 (Figure 9.1).
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E3H004.

9.2.1.1 Narrative

Flows to the estuary shall be sufficient to maintain the estuary in an ecological condition that is equal to or better than the ecological condition in June 2006.

9.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 9.1. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (February): 1.23 m³/s Even in extreme drought flow should not drop below: 0.01 m³/s.

Note: River flow $<2 \text{ m}^3/\text{s}$ should never persist for longer than three months at E3H004.

Table 9.1	Hydrology RQOs for E33H for the REC of the estuary of a C. To be met at the E3H004
	(Lutzville). Units m³/s

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	42.17	28.76	21.52	37.04	24.33	7.43	95.80	153.56	471.91	470.40	210.01	149.81
90%ile	23.61	7.85	7.27	3.66	3.84	4.07	9.43	66.69	112.14	150.96	116.78	65.34
80%ile	11.33	3.96	2.33	1.62	1.80	2.11	4.34	17.92	72.07	78.37	81.56	40.07
70%ile	7.85	2.16	1.64	1.53	1.46	1.73	2.24	8.84	44.03	53.49	52.19	30.07
60%ile	5.44	1.67	1.52	1.53	1.45	1.39	1.79	4.84	21.61	38.99	33.68	20.61
50%ile	4.36	1.42	1.52	1.53	1.41	1.32	1.23	2.33	14.39	22.60	27.35	13.96
40%ile	3.17	1.36	1.52	1.53	1.41	1.32	1.15	1.65	9.02	12.62	17.14	12.10
30%ile	2.00	1.36	1.52	1.53	1.41	1.32	1.15	0.90	5.01	8.22	11.91	8.78
20%ile	1.70	1.36	1.52	1.53	1.41	1.32	1.15	0.52	2.19	5.28	8.21	5.68
10%ile	1.43	1.36	1.52	1.24	0.95	0.70	0.80	0.43	0.84	2.91	3.92	3.28
1%ile	1.20	1.19	0.89	0.88	0.40	0.22	0.01	0.04	0.32	0.49	0.84	1.59

9.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants River Estuary.
Monitor at:	E3H004 (formerly E1H016), plus periodic field measurements in the estuary as
	detailed in Table 9.2 as per DWAF (2006b).
Baseline data:	www.dwaf.gov.za/iwgs/wms/data/WMS pri txt.asp (Olifants W).

9.2.2.1 Narrative

Salinity intrusion should not exceed of TPCs for fish, invertebrates, macrophytes and microalgae. System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) should not exceed TPCs for biota.

9.2.2.2 Numerical

The suggested numerical limits for the water quality to achieve the above narrative RQOs are given in Table 9.2.

Component	RQOs	TPCs	
River inflow at E3H004			
Temperature	< 20°C (summer)	> 20°C (summer)	
рН	> 6.5 and < 8.5	>7	
Dissolved oxygen	> 4 mg / (1m from bottom)	< 4 mg / (1m from bottom)	
Total dissolved solids	< 3500 mg /	< 3500 mg /	
Dissolved inorganic	< 0.5 mg / at flows 20 m3/s	$> 0.5 \text{ mg}/\text{ at flows} = 20 \text{ m}^2/\text{s}$	
nitrogen concentration		> 0.5 mg / at flows 20 m3/s	
Dissolved Reactive			
Phosphorous	< 0.1 mg / at E3H004	>0.1 mg / at E3H004	
concentration			
Turbidity	to be determined		
>=8 km above mouth			
Turbidity	Secchi disc reading at the 8-km mark upstream		
Turblatty	of the mouth >1 m		
	Salinity never > 35 ppt anywhere in the estuary		
	Salinity in the estuary at the 8-km mark	None available	
Salinity	upstream of the mouth < 20 ppt		
	Salinity in the estuary at the 16-km mark		
	upstream of the mouth < 10 ppt		

Table 9.2	Water quality RQOs and TPCs for the Olifants River Estuary (E33H)
-----------	---

9.2.3 Macrophytes

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants Estuary.
Monitor at:	Positions specified in Table 9.3, as per DWAF (2006b).
Baseline data:	DWAF (2006b) – single data collection.

9.2.3.1 Narrative

The diversity and extent of indigenous macrophytes shall equal that measured in summer 2004. The extent of invasive waterweeds and nuisance filamentous algae shall be less relative to summer 2004.

9.2.3.2 Numerical

The suggested numerical limits for the spatial extent of different macrophyte communities to achieve the above narrative RQOs are given in Table 9.3.

Component	RQO	TPCs
Area of plant communities	Maintain (summer 2004) distribution and abundance over the entire estuary: Zostera capensis = 48 ha; intertidal salt marsh = 92 ha; supratidal salt marsh = 143 ha; floodplain salt marsh = 797 ha; reeds and sedges = 60 ha.	Greater than 20% change in areas
Area covered by invasive waterweeds (<i>Azolla filiculoides</i>); nuisance filamentous algae (e.g. <i>Enteromorpha, Ulva, Cladophora</i>); or pondweed (<i>Potamogeton pectinatus</i>)	Reduce area by 50% (relative to summer 2004). i.e. to 30 ha (half of channel)	Upper 15k of estuary with > 50% of channel covered by waterweeds, algae or pondweed.

Table 9.3 Macrophyte RQOs and TPCs for the Olifants River Estuary (E33H).

9.2.4 Microalgae

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants Estuary.
Monitor at:	Olifants River Estuary as per DWAF (2006b).
Baseline data:	DWAF (2006b) – single data collection.

9.2.4.1 Narrative

Microalgae should be dominated by flagellates. Phytoplankton and blue-green algal growth should be limited.

9.2.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 9.4.

Component	RQO	TPCs
Benthic microphytobenthic biomass	<40 mg m ⁻² chlorophyll a	>40 mg m ⁻² chlorophyll a
Flagellates	Dominant	No dominant
Diatoms >10 taxa per site		<11 taxa per site
Dinoflagellates	<5% of the total phytoplankton count	45% of the total phytoplankton count
Phytoplankton biomass	<15 µg/ chlorophyll a in summer <10 µg/ chlorophyll a in winter	>14 µg/ chlorophyll a in summer >9 µg/ chlorophyll a in winter
Blue-green algae	<10% of the total phytoplankton count	>8% of the total phytoplankton count

 Table 9.4
 Microalgal RQOs and TPCs for the Olifants River Estuary (E33H)

9.2.5 Invertebrates

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants Estuary.
Monitor at:	Olifants River Estuary as per DWAF (2006b).
Baseline data:	DWAF (2006b) – single data collection.

9.2.5.1 Narrative

The polychaete worm species Capitella capitata should not dominate the invertebrate fauna.

9.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 9.5.

Table 9.5 Invertebrate RQOs and TPCs for the Olifants River Estuary (E33H)

Component	RQO	TPCs
The indicator polychaete worm species	<50% abundance of benthic	>50% abundance of benthic
Capitella capitata	species at any site	species at any site

9.2.6 Fish

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).	
Applicable to:	Olifants Estuary.	
Monitor at:	Olifants River Estuary as per DWAF (2006b).	
Baseline data:	DWAF (2006b) – single data collection.	
Method:	Conduct fish surveys using seine and gill nets in winter and summer, every three	
	years, along the estuary (12 stations).	

9.2.6.1 Narrative

The fish fauna should be dominated by estuarine and partially estuarine dependent species, and should include a significant number of 0-1 year old fish, with no age classes missing.

9.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 9.6.

Component	RQO	TPCs
	Estuarine species (e.g. estuarine round-herring, Cape silverside, prison goby, commafin goby, longsnout pipefish) (35%)	Level of estuarine species drop below 30% of total abundance
Fish assemblages	Partially estuarine dependent species (e.g. harder, elf, blackhand sole, white stumpnose) (50-60%)	Levels of partially estuarine dependent species drop below 50% or above 60% of total abundance
Retain the following ratios of fish	Obligate estuarine dependent (e.g. white steenbras, leervis, freshwater mullet, flathead mullet); (>1%)	Levels of obligate estuarine dependent species drop below 1% of total abundance
assemblages in the estuary:	Indigenous freshwater species, (e.g. Clanwilliam yellofish, sawfin and Cape galaxias) (>1%)	Levels of exotic freshwater species above 0.5% (e.g. Mozambique tilapia out-
the estuary.	Exotic freshwater species (e.g.smallmouth bass, bluegill sunfish, banded tilapia and Mozambique tilapia) (<0.5%)	competing resident species). Benthic dwellers species drop below 2% of total abundance in estuary above 18 km from the mouth
Demographics	There should be a significant number of 0 -1 year old fish and no age classes missing	Year class missing for a species.

Table 9.6	Fish RQOs and TPCs for the Olifants River Estuary (E33H).
-----------	---

9.2.7 Birds

Source:	Comprehensive Reserve Determination Study (DWAF 2006b).
Applicable to:	Olifants Estuary.
Monitor at:	Olifants River Estuary.
Baseline data:	DWAF (2006b) – single data collection.
Method:	Combined summer and winter counts over the whole estuary of all water-associated
	birds. All birds should be identified to species level.

9.2.7.1 Narrative

The abundance and diversity of birds in the estuary shall be equal to or greater than those measured summer 2004.

9.2.7.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 9.7.

Table 9.7	Bird RQOs and TPCs for the Olifants River Estuary (E33H).
-----------	---

Component	RQO	TPCs
Birds	Retain the species richness, abundance and diversity of the bird community, representative of resident and migrant waders, wading birds and water fowl as under the Present State, except for that there would be a <i>higher</i> <i>abundance of water fowl</i> (<i>increasing by about 10% from</i> <i>Present State numbers</i>)	 Community composition or bird numbers deviates by more than 50% of average seasonal baseline counts for two consecutive summer or winter seasons, focusing on waders wading birds, terns & water fowl (summer and winter), and specifically red data species which are supported by the system (e.g. Pelican, Oyster catchers, Chestnut banded plover) In the case of water fowl - densities decline by 20% of average seasonal baseline counts for two consecutive summer or winter seasons

9.3 GROUNDWATER

No detailed RQOs have been set. The Groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 9.8.

Report No.3 Final Report

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwat er Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E33H	3.05	0.07	0.01	0%	2.97	2%	A

Table 9.8 Groundwater Reserve Requirements for E33H.

9.4 WETLANDS

Not applicable (see Table 6.3).

10 E10K (R13) RESOURCE QUALITY OBJECTIVES

10.1 UPDATED RESOURCE CLASSIFICATION

Quaternary	Target Ecological Categories				
Quaternary	Mainstem		Key tributaries		Wetlands
E10J	Olfiants	D	Rietvlei	С	wetland area 1.9% of quaternary, 50% in AB

10.2 OLIFANTS RIVER IN E10K

Key monitoring points for the Olifants River in E10K:

- E1R001 (Olifants River at Bulshoek Barrage; Figure 10.1).
 - EWR Site 2 (2006; Figure 10.2; Box 10.1).

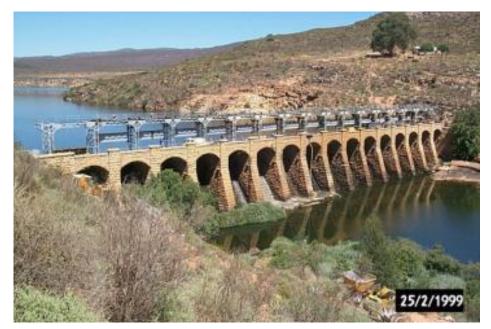
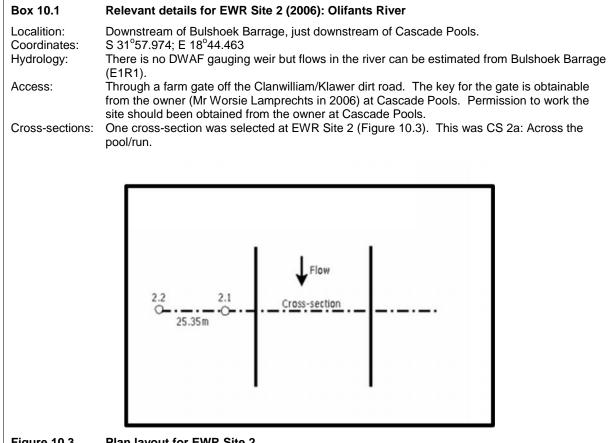



Figure 10.1 E1R001 at Bulshoek Barrage (www.dwa.gov.za)

Figure 10.2 EWR 2 (2006)

Figure 10.3 Plan layout for EWR Site 2.

Fixed stations were also installed at the site in November 2003. The elevations (above a local datum; Eald) of the fixed stations, the orientations of cross-sections relative to fixed stations and a description of the station type (steel peg in concrete or marked rock (MRK)) are given in Table 10.1.

Table 10.1 Elevations of fixed stations, orientations of cross-sections relative to fixed stations and descriptions of station type.

	EWR		Station		Horizontal angle from	
River	Site No.	Cross-section	Set-up	Orientation	orientation station to cross- section (dec. deg.)	Eald ⁸ (m)
Olifants	2	2	A	2.2(SPC)	2.1(SPC)	0.000

10.2.1 Hydrology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10K.
Monitor at:	E1R001 (Figure 10.1).
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E1R001.

10.2.1.1 Narrative

Flows shall be suffient to maintain the river in an ecological condition that is equal to or better than a D category.

⁸ Elevation above local datum.

10.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (February): 1.16 m³/s Even in extreme drought flow should not drop below: 0.01 m³/s.

This minimum lowflow is to support the estuary, and is expected to be provided through releases made from Clanwilliam Dam and Bulshoek Barrage.

10.2.2 Water quality

Note: In the context of the irreversible habitat changes, and the knock-on biological degradation, as a result of the long-term presence and unfavourable operation of Bulshoek Barrage, water quality is one of the most important RQOs for this reach.

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10K.
Monitor at:	E1R001 (Olifants River at Bulshoek Dam) and with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS pri txt.asp (Olifants W).

10.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

10.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 10.2.

Component	Value	Monitor at	TPCs	
Salts				
MgSO ₄ (mg/)	<37		>35	
Na2SO ₄ (mg/)	<51		>45	
MgCl ₂ (mg/)	<51	Cascades	>45	
CaCl ₂ (mg/)	<105		>100	
NaCl (mg/)	<389		>350	
Physical				
Water temperature (°C)	Not specified		>7	
рН	6.5 – 9.0	_	>6	
EC (mS/ m)	<25	Cascades	>20	
Dissolved oxygen (DO) (mg/	> 6.0		<5.8	
)			1010	
Toxics				
Ammonia as NH ₃ (mg/)	<0.007	Cascades	>0.006	
Nutrients				
Nitrates as N (mg/)	<0.100	Cascades	>0.09	
Phosphorus as PO ₄ -P (mg/)	<0.015	Cascaues	>0.010	

Table 10.2 Water quality RQOs and TPCs for E10K

10.2.3 Geomorphology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10K.
Monitor at:	EWR Site 2 (2006) - Box 10.1.
Baseline data:	DWAF (2005) – single data collection.

10.2.3.1 Narrative

The abundance and diversity of habitats in the river shall be equal to or greater than those measured in 2005.

10.2.3.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 10.3.

Table 10.3 Geomorphological RQOs and TPCs for E10K

Component	Values: Cross-section A	TPCs
Dry season bed material composition (mm)		
D ₁₆	0.1	> 20% increase or decrease
D ₅₀	0.3	> 20% increase or decrease
D ₈₄	0.9	> 20% increase or decrease
Channel geometry		
Dry season water surface slope (m/m)	0.0001	> 5% increase or decrease
Active channel width (m)	67	> 5% increase or decrease
Bankfull width (m)	70	> 5% increase or decrease
Key habitats		
Aquatic vegetation in and out of current	Present	None available
Stones-in-current, including riffle and run	Present	None available

10.2.4 Riparian vegetation

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10K.
Monitor at:	EWR Site 2 (2006) - Box 10.1.
Baseline data:	DWAF (2005) – single data collection.

10.2.4.1 Narrative

The abundance and diversity of vegetation alongside the river shall be equal to or greater than those measured in 2005 (see Table 10.4). There shall be no Sesbania punicea alongside the river and only isolated individuals of *Acacia longifolia*, *A. mearnsii*, *A. melanoxylon*, *Eucalyptus camaldulensis*. There shall be no *Azolla filiculoides*, *Lemna gibba* or other aquatic weeds in the river.

	1 0	, 1	
Component	Species	RQO	TPCs
	Azolla filiculoides*	None present.	Increase
	Lemna gibba	None present.	Increase
Aquatic Zone	Nymphaea nouchali	Present in low leaf density around edges of waterways during dry season	Changes in densities
	Aponogeton distachyos	Present in low leaf density around edges of waterways during dry season	Increase
	Panicum repens	Low density on channel margins.	Dense cover extending into floating aquatic zone
Lower Wet Bank	Juncus Iomatophyllus	Low density on coarse sandy substrates.	Increase extending into Aquatic Zone
Lower wet bank	Isolepis prolifer	Low density on coarse sandy substrates exposed during lower flows.	Dense cover instead of low cover
	Paspalum urvillei*	Low leaf density around edges of waterways during dry season.	Increase extending into Tree- shrub and Back Dynamic Zone
	Phragmites australis	Only a narrow banding should be present in Wet Bank.	Increase extending into Tree- shrub and Back Dynamic Zone
Upper Wet Bank	Prionium serratum	Narrow banding should be present on pebbles and coarse sandy substrates exposed during lower flows.	Change in width and continuity of beds
Wet Bank	Salix mucronata	Must be present.	Decrease
Upper Wet Bank	Sesbania punicea*	None present.	Decrease of mature trees
Tree-shrub, Back Dynamic	Acacia karoo	Present lining parts of rivers and streams exposed to annual winter high flows	Increase in Wet Bank
All zones	Acacia longifolia*, A. mearnsii*, A. melanoxylon*, Eucalyptus camaldulensis*	Only isolated individuals present.	Increase.

Table 10.4	Riparian vegetation RQOs and TPCs for E10K; * = exotic species.

10.2.4.2 Numerical

None available.

10.2.5 Macroinvertebrates

Source:	Comprehensive Reserve Determination Study (DWAF 2005), adjusted to higher
	target category (D versus E).
Applicable to:	E10K.
Monitor at:	EWR Site 2 (2006) - Box 10.1.
Baseline data:	DWAF (2005) – single data collection.

10.2.5.1 Narrative

The abundance and diversity of macroinvertebrates in the river shall be equal to or greater than those measured in 2005.

10.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 10.5.

Order	Таха	RQO	TPCs
Family presence/absence			
Ephemeroptera	Baetidae	> 2 species	Absort from 5 50% of somples
Hemiptera	Any	> 2 families	Absent from > 50% of samples
Odonata	Any	> 2 families	Fewer than two families from each order
Plecoptera	Notonemouridae	Present in 50% of replicate samples of stones-in-current	Absent from > 30% of samples
SASS results			
SASS Score		>50	< 30
ASPT		>5	< 4.5

Table 10.5 Macroinvertebrate RQOs and TPCs for E10K

10.2.6 Fish

No RQOs were set for indigenous fish: Indigenous fish species in the mainstem of the Olifants and Doring Rivers are functionally extinct (Paxton et al. 2002). Due to the highly disturbed nature of this reach, i.e. the absence of spawning habitat (gravel and cobble-bed riffles), the lack of access to upstream spawning habitat, and the predominance of introduced species, it is considered unlikely that native species will recover and recolonise these reaches under any management scenario (DWAF 2005).

At sites where this is known to be the case, the alien fish community has been used as a substitute for the indigenous fish community and an indicator of river condition since some of the alien species have physical habitat and water quality requirements that relate to reference conditions.

Source: Applicable to: Monitor at:	Comprehensive Reserve Determination Study (DWAF 2005). EWR Site 2 (2006) - Box 10.1. EWR Site 2 (2006).
Baseline data:	DWAF (2005) - single data collection, Paxton (unpublished data), SAIAB database
Gear:	The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

10.2.6.1 Narrative

The abundance and diversity of alien fish in the river shall be equal to or greater than those measured in 2005.

10.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 10.6.

	Sub-component	RQOs	TPCs	
snou	Species assemblage	There are no indigenous fish remaining in this section		
Indigenous	Demographics	There is no recruitment of indigenous fish in the mainstem at E10K	None available	
_	Fish Health	-		
	> 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) Species < 90 % bluegill sunfish Lepomis			
DemographicsThere should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus, T. sparrmanii, O. mossambicus</i> and <i>T. sparrmanii</i> and < 70 mm TL for bass).		present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus, T. sparrmanii, O. mossambicus</i> and <i>T.</i>	None available	
Alien	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch		

Table 10.6Fish RQOs and TPCs for E10K

10.3 TRIBUTARIES

There are no FEPAs identified within this quaternary catchment. RQOs cannot be set for the tributaries with the current level of data available.

10.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 10.7.

 Table 10.7
 Groundwater Reserve Requirements for E10K

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E10K	6.67	2.01	0.36	5%	4.66	30%	С

10.5 WETLANDS

Not applicable (see Table 6.3).

11 E10J (R23) RESOURCE QUALITY OBJECTIVES

11.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories				
Quaternary	Mainste	em	Key tributaries		Wetlands
			Seekoei River	С	
E10J	Olfiants D		Kliphuis River, upstream of 32° 7'4.63"S; 18°53'45.48"E	A/B	wetland area 1.1% of
			Kliphuis River, downstream of 32° 7'4.63"S; 18°53'45.48"E	D	quaternary, 5.5% in AB

11.2 OLIFANTS RIVER IN E10J

Key monitoring points for the Olifants River in E10J:

- E1H016 (Olifants River at Clanwilliam Dam; Figure 11.1).
- Olifants River immediately downstream of Clanwilliam Bridge.

Figure 11.1 E1H016 on the Olifants River at Clanwilliam Dam (www.dwa.gov.za)

11.2.1 Hydrology

Source:	Clanwilliam Raising Feasibility Study (Southern Waters 2007).
Applicable to:	E10F and E10E.
Monitor at:	E1H016 (Figure 14.1).
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E1H013.

11.2.1.1 Narrative

Flows shall be suffient to maintain the river in an ecological condition that is D category.

11.2.1.2 Numerical

Formal stipulations for lowflows are not appropriate at E10J because the Olifants River in this quaternary is used as a conduit for irrigation releases from Clanwilliam Dam (and to maintain levels at Bulshoek Barrage). Thus lowflows exceed those require for hydrological RQOs in the dry summer months and are probably less than those required in the wet winter months. However, consideration of hydrological RQOs for E10J must take into consideration:

- 1. The river is in a Category D, despite having been subjected to the operating regime of Clanwilliam for *c*. 40 years (since 1962/64).
- 2. Natural variation will be impossible to achieve as long as the river is used as a conduit for irrigation supply. If assessed at the level of overall volume of lowflows in the wet and dry season, seasonal reversal does not currently occur. Seasonal reversal (at the level of overall volume of lowflows) will however occur if Clanwilliam Dam is raised by 10- and 15-m.
- Cessation of flows in May and June is frequent under the simulated hydrology used for the Clanwilliam Raising Study for present day, the 10- and 15-m raising scenarios. These are NOT acceptable, and minimum flows in the system should **not ever drop below 0.02 m³/s**.

The flood requirements for E10J (and the downstream river) should be built into the irrigation releases from the raised Clanwilliam Dam. Class 1 flood releases can be made in September and October (17 m³/s for 12 hrs) providing the water level in Bulshoek Barrage can be drawn down below about 4.4 MCM without affecting the yield of the Clanwilliam Dam/Bulshoek Barrage system. The flood requirements are based on the requirement for spawning releases for yellowfish (Cambray *et al.* 1997; King *et al.* 1998). In wet years it is recommended that Class 1 releases are also made in November and December, as these are key spawning months (Table 11.1).

The Class 2, 3 and 4 floods (Table 11.1) occurred in the simulated record presumably as spills and have been included in the RQOs to ensure that the dam operation remains such that they can be supplied, albeit as spill.

Flood type	Daily average peak (m ³ /s)	Duration (days)	Volume (MCM)	Number requested ⁹	Months	
Intra-annual	Intra-annual Class (i.e., each flood has a return period of 1:1)					
Class 1	20	3	4	4 (10 m) 4 (15 m)	Aug-Dec	
Class 2	59	4	11	1 (10 m) 1 (15 m)	Jul-Sep	
Class 3	117	6	23	0 (10 m) 1 (15 m)	Jul-Aug-8	
Class 4	234	7	49	1 (10 m) 0 (15 m)	June-Aug	
Inter-annual	Class (return period given be	low)				
1:2	260	8	78	Present	Not stipulated	
1:5	255.7	8	134	Present	Not stipulated	
1:10	394.8	11	140	Present	Not stipulated	
1:20	481.2	8	140	Present	Not stipulated	

Table 11.1	Summary of the flood requirements for E10J for REC of Category D.
------------	---

⁹ The flood requirements differ slightly depending on whether Clanwilliam Dam is raised by 10 or 15 m.

11.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10J.
Monitor at:	E1H016 (Olifants River at Clanwilliam Dam) and with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS_pri_txt.asp (Olifants W).

11.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

11.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 11.2.

Component	Value	Monitor at	TPCs	
Salts		•		
MgSO ₄ (mg/)	< 37	E1H016	>37	
Na ₂ SO ₄ (mg/)	< 51	E1H016	>51	
MgCl ₂ (mg/)	< 51	E1H016	>51	
CaCl ₂ (mg/)	< 105	E1H016	>105	
NaCl (mg/)	< 389	E1H016	>389	
Physical				
Water temperature (°C)	Not specified	No known temperature dependencies for biota in this reach.	None available	
рН	6.5 - 9.0	E1H016	>6	
EC (mS/ m)	< 15	E1H016	>20	
Dissolved oxygen (DO) (mg/)	> 6.0	Periodic field measurements	<5.8	
Toxics		•		
Ammonia as NH_3 (mg/)	< 0.007	Periodic field measurements	>0.006	
Nutrients				
Nitrates as N (mg/)	< 0.100	E1H016	>0.09	
Phosphorus as PO ₄ -P (mg/)	< 0.020	E1H016	>0.014	
Bacteria				
E. coli	0	E1H016	>0	

Table 11.2 Water quality RQOs and TPCs for E10J

11.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

11.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

11.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

11.2.6 Fish

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.

Monitor at:Olifants River immediately downstream of Clanwilliam Bridge.Baseline data:Cambray *et al.* 1997; King *et al.* 1998, Paxton (unpublished data), SAIAB database.

11.2.6.1 Narrative

Labeobarbus capensis should be present.

11.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given below.

	Sub-component	RQOs	TPCs
	Species assemblage	There should be \geq 1 of the following fish species present in the catch: <i>Labeobarbus capensis</i>	
Indigenous	Demographics	There is currently no recruitment of indigenous fish in the mainstem at E10J. All fish are expected to be >150 mm TL	
Indige	Fish Health Parasites, lesions and deformities should be present on < 5 % of the catch		
	Species assemblage	 > 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) < 90 % Lepomis macrochirus Present: Tilapia sparrmanii, Oreochromis mossambicus 	None available
S	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus</i> and <i>T.</i> <i>sparrmanii</i> and < 70 mm TL for bass).	
Aliens	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	

Table 11.3 Fish RQOs and TPCs for E10J

11.3 TRIBUTARIES

Detailed RQOs have been set for the Jan Dissels River which runs from E10H into E10J, and is the main tributary in this quaternary (see Section 12). Detailed hydrological RQOs cannot be set for the Kliphuis and Seekoei Rivers with the current level of data available.

The Kliphuis River (upstream of 32° 7'4.63"S; 18°53'45.48"E) has been identified as a FEPA and has a PES of B (DWAF 2012d). Its condition should thus be improved to an A/B. The Seekoei River is also a FEPA. Its current condition is C Category.

Basic hydrological RQOs have been set for incremental inflow to E10J as a whole (see Section 11.3.1).

11.3.1 Hydrology

Basic RQOs: Appendix A.

11.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category A/B in the Kliphuis River, upstream of 32° 7'4.63"S; 18°53'45.48"E.
- Category D in the Kliphuis River, downstream of 32° 7'4.63"S; 18°53'45.48"E (DWAF 2012d).
- Category C in the Seekoei River.

11.3.1.2 Numerical See Appendix A.

11.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 11.4.

 Table 11.4
 Groundwater Reserve Requirements for E10J

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E10J	19.32	2.00	1.63	8%	17.32	10%	В

11.5 WETLANDS

Not applicable (see Table 6.3).

12 E10H (R24) RESOURCE QUALITY OBJECTIVES

12.1 UPDATED RESOURCE CLASSIFICATION

Quaternary	Target Ecological Categories						
Quaternary	Mainstem		Key tributaries		Wetlands		
E10H	Jan Dissels (above causeway)	В	All small tributaries	В			
	Jan Dissels (between	с	Klip River	В	wetland area 3.3% of quaternary, 10% in AB		
			Boschkloof River upstream of 32°12'15.30"S; 18°58'38.51"E	В			
	causeway and E1H006)		Boschkloof River downstream of 32°12'15.30"S; 18°58'38.51"E	С			

12.2 JAN DISSELS RIVER IN E10H

Key monitoring points for the Jan Dissels River in E10H:

- E1H006 (Jan Dissels River at Clanwilliam (Figure 12.1).
- Jan Dissels River at causeway at Boskloof (Figure 12.2).

Figure 12.1

E1H006 on the Jan Dissels River at Clanwilliam

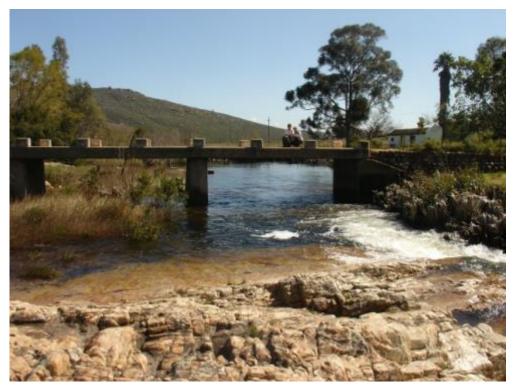


Figure 12.2 Jan Dissels River at causeway at Boskloof

12.2.1 Hydrology

Source:	Rapid II Reserve Study on the Jan Dissels River (Southern Waters 2007).
Basic RQOs:	Appendix A.
Applicable to:	E10H at E1H006.
Monitor at:	E1H006 (Figure 12.1).
Baseline data:	http://www.dwa.gov.za/Hydrology/HyImage.aspx?Station=E1H006.

12.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to:

- Above the Boskloof Causeway: B Category;
- Boskloof Causeway to E1H006: C Category;
- In E10J: E1H006 to the confluence with Olifants River: D Category.

12.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below, and the detail with respect to flood requirements is given in Table 12.1.

Mean flow in driest month at E1H006 (February): 0.03 m³/s Even in extreme drought flow should not drop below: 0.01 m³/s.

Flood type	Daily average peak (m ³ /s)	Duration (days)	Volume (MCM)	Number requested	Months	
Intra-annual	Class (i.e., each flood has a	return period of 1	:1)	· ·		
Class 1	1.60-3.20	2	0.29	3	April - June September - November	
Class 2	3.21-6.30	3	0.64	21	June- September	
Class 3	6.31-12.50	4	0.93	1	June- September	
Class 4	12.51-25.00	5	-	-	Not applicable	
Inter-annual	Inter-annual Class (return period given below)					
1:2	Not calculated			Present	Not stipulated	
1:5	Not calculated			Present	Not stipulated	
1:10	Not calculated			Present	Not stipulated	
1:20	Not calculated			Present	Not stipulated	

Table 12.1 Summary of the flood requirements for E10H

12.2.2 Water quality

Source:	Rapid II Reserve Study on the Jan Dissels River (Southern Waters 2007).
Applicable to:	E10H.
Monitor at:	E1H006Q01 (Jan Dissels River at Clanwilliam) and with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS pri txt.asp (Olifants W).

12.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

12.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 12.2.

-	-		
Component	Value	Monitor at	TPCs
Salts			
MgSO ₄ (mg/)	<23	E1H006	>23
Na ₂ SO ₄ (mg/)	<33	E1H006	>33
MgCl ₂ (mg/)	<30	E1H006	>30
CaCl ₂ (mg/)	<57	E1H006	>57
NaCl (mg/)	<191	E1H006	>191
Physical			
Water temperature	ure Not Na known tennersture dependencies for bists in this reach		
(oC)	specified	No known temperature dependencies for biota in this reach.	
рН	5.2 – 7.0	E1H006	>6
EC (mS m ⁻¹)	<10	E1H006	
Dissolved oxygen (DO)	> 6.0	Periodic field	<6.0
(mg -1)		measurements	<0.0
Toxics			
Ammonia as NH ₃ (mg	< 0.007	Periodic field	None available
-1)	< 0.007	measurements	
Nutrients			
Nitrates as N (mg -1)	<0.020	E1H006	
Phosphorus as PO4-P	<0.010	E1H006	None available
(mg -1)			

Table 12.2	Water quality RQOs and TPCs for E10H
------------	--------------------------------------

12.2.3 Geomorphology

Source:	Field visit in 2012.
RQOs:	Table 12.3.
Applicable to:	EWR Site 1 (2006) - Box 14.1.
Monitor at:	Jan Dissels River at causeway at Boskloof (Figure 12.2).
Baseline data:	DWAF (2005) – single data collection.

12.2.3.1 Narrative

A riffle run sequence, with aquatic vegetation and stones in current, must be present.

12.2.3.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given below.

Table 12.3	Geomorphological RQOs and TPCs for E10H

Component	Specifications	TPCs
Key habitats		
Aquatic vegetation in and out of current	Must be present	None available
Stones-in-current, including riffle and run	Must be present over at least 50% of the site	None available

12.2.4 Riparian vegetation

Source:	Rapid II Reserve Study on the Jan Dissels River (Southern Waters 2007).
Applicable to:	E10H.
Monitor at:	Jan Dissels River at causeway at Boskloof (Figure 12.2).
Baseline data:	DWAF (2007) – single data collection.

12.2.4.1 Narrative

The riparian vegetation should be dominated by indigenous species (see Table 12.4). There shall be no *Sesbania punicea* alongside the river and only isolated individuals of *Acacia longifolia*, *A. mearnsii*, *A. melanoxylon*, *Eucalyptus camaldulensis*. There shall be no *Azolla filiculoides*, *Lemna gibba* or other aquatic weeds in the river.

Component	Species	RQO	TPCs
Aquatic Zone	Azolla filiculoides*	None present.	Presence
Aquatic Zone	Lemna gibba	None present.	Presence
Upper Wet Bank	Phragmites australis	Only a narrow banding should be present in Wet Bank.	None available
Wet Bank	Prionium serratum	Narrow banding should be present on pebbles and coarse sandy substrates exposed during lower flows.	None available
Upper Wet Bank	Sesbania punicea*	None present.	Presence
All zones	Acacia longifolia*, A. mearnsii*, A. melanoxylon*, Eucalyptus camaldulensis*	Only isolated individuals present.	None available

Table 12.4 Riparian vegetation RQOs and TPCs for E10H; * = exotic species.

12.2.4.2 Numerical None available.

12.2.5 Macroinvertebrates

Source:	Rapid II Reserve Study on the Jan Dissels River (Southern Waters 2007).
Applicable to:	E10H.
Monitor at:	Jan Dissels River at causeway at Boskloof (Figure 12.2).
Baseline data:	DWAF (2007) – single data collection.

12.2.5.1 Narrative

The macroinvertebrate community should be dominated by sensitive mountan stream taxa.

12.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 12.5.

Component			800	TDCa
	Order	Таха	- RQO	TPCs
		Baetidae	> 4 species	Fewer than 7 species present overall at site (all biotopes combined)
	Enhomorontora	Demoreptus capensis	Present in summer	Absent in summer
	Ephemeroptera	Leptophlebiidae	Present in at least 50% of replicate samples	Four then Destides in
		Heptageniidae	Present in summer in stones- in-current / stones-out-of- current	Fewer than Baetidae in summer samples
Family	Coleoptera	Any	> 3 families	< 3 families present
presence/ absence	Trichoptera	Any	> 3 families	Fewer than 5 species present overall at site, and two or fewer of the following families: Barbarochthonidae, Leptoceridae, Petrothrincidae, Sericostomatidae
		Any	> 1 family	
	Odonata	Corydalidae	Present in summer	Absent
		Philopotamidae	Present in winter	
	Plecoptera	Notonemouridae	Present in 50% of replicate samples of stones-in-current	Absent from samples
SASS results	SASS Score		>150	<150
SASS results	ASPT		>7.5	<8

 Table 12.5
 Macroinvertebrate RQOs and TPCs for E10H

12.2.6 Fish

Source:	Paxton (unpublished data), SAIAB database.
Applicable to:	E10F and E10E.
Monitor at:	Boskloof Causeway.
Baseline data:	Paxton (unpublished data), SAIAB database.
Gear:	RQOs for the fish assemblages assume the use of a range of gears including: small
	fyke nets (20-m wing length) in tributary pools, seine nets on sandy beaches if present
	(5X2 m). Electrofishing should be conducted in rocky riffles and runs. Relative
	abundances of target species and size classes will differ between gear types.
	Proportions should therefore be compared within catches of the same gear type.

12.2.6.1 Narrative

At least three of the following species should be present in the catch: *Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus.* There should be no alien species present.

12.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 12.6.

	Sub- component	RQOs	TPCs	
Indigenous	Species assemblage	At least three of the following species should be present in the catch: Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus		
Indig	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 40 mm FL for small cyprinids; < 70 mm TL for large cyprinids).		
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch		
	Sub- component	RQOs		
Alien	Species assemblage	There should be no alien fish species present in the tributaries	Dragona of any alian fish	
	DemographicsNo alien fish species presentFish HealthNo alien fish species present		Presence of <u>any</u> alien fish	

Table 12.6 Fish RQOs and TPCs for E10H

12.3 TRIBUTARIES

The Boskloof has been identified as a FEPA and has a PES of B. Its condition should thus be improved to an A/B.

Basic hydrological RQOs have been set for incremental inflow to E10H as a whole (see Section 12.3.1).

12.3.1 Hydrology

Basic RQOs: Appendix A.

12.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category A/B in the Boskloof River upstream of 32°12'15.30"S; 18°58'38.51"E.
- Category C in the Boskloof River downstream of 32°12'15.30"S; 18°58'38.51"E.
- Category B in the Klip River.

12.3.1.2 Numerical

See Appendix A.

RQOs cannot be set for the tributaries of the Jan Dissels with the current level of data available.

12.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 12.7.

 Table 12.7
 Groundwater Reserve Requirements for E10H

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E10H	9.62	0.33	1.51	16%	9.30	3%	A

12.5 WETLANDS

Not applicable (see Table 6.3).

13 E10G (R34) RESOURCE QUALITY OBJECTIVES

13.1 UPDATED RESOURCE CLASSIFICATION

Quaternary			Target Ecological Cate	gories	
Qualemary	Mainstem		Key tributaries		Wetlands
			Rondegat	В	
E10G	Olifants	D	Elandskloof	D	-

13.2 OLIFANTS RIVER IN E10G

The Olifants River within quaternary catchment E10G is mainly inundated by the backwaters of the Clanwilliam Dam. The RQOs at E10F apply to the uninundated reaches of the mainstem (see Section 14).

13.3 TRIBUTARIES

Detailed RQOs have been set for the Rondegat River, which is the main tributary in this quaternary (see Section 12). Detailed hydrological RQOs cannot be set for the Kliphuis River with the current level of data available.

13.3.1 Kliphuis River

The Kliphuis River (upstream of 32° 7'4.63"S; 18°53'45.48"E) has been identified as a FEPA and has a PES of B (DWAF 2012d). Its condition should thus be improved to an A/B.

The ecological Reserve should be sufficient to maintain:

- Category A/B in the Kliphuis River, upstream of 32° 7'4.63"S; 18°53'45.48"E.
- Category D in the Kliphuis River, downstream of 32° 7'4.63"S; 18°53'45.48"E (DWAF 2012d).

13.3.2 Rondegat River

The Rondegat has been identified as a FEPA. It is currently in a B Category. Efforts should thus be made to improve the condition of the upper reaches (above EWR3) to an A/B.

Key monitoring points for the Rondegat River in E10G:

• EWR Site 3 (2006; Figure 12.1; Box 10.1).

Figure 13.1 Rondegat River at EWR Site 3 (2006)

13.3.2.1 Hydrology

Source:Comprehensive Reserve Determination Study (DWAF 2005).Applicable to:E10G-Rondegat.Monitor at:EWR Site 3.

13.3.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to B Category.

13.3.2.1.2 <u>Numerical</u>

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below, and the detail with respect to flood requirements is given in Table 13.2.

Mean flow in driest month (February): 0.11 m³/s Even in extreme drought flow should not drop below: 0.01 m³/s.

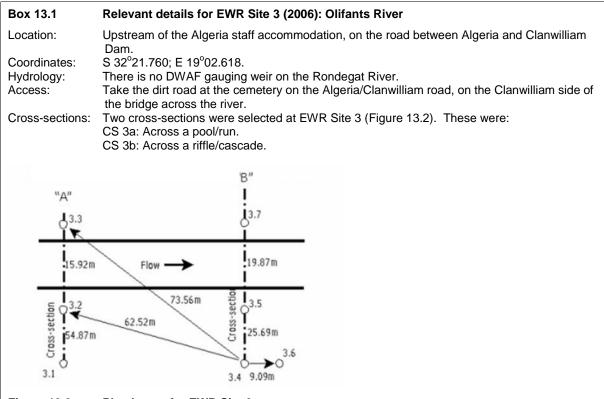


Figure 13.2 Plan layout for EWR Site 3.

Fixed stations were also installed at the site in November 2003. The elevations (above a local datum; Eald) of the fixed stations, the orientations of cross-sections relative to fixed stations and a description of the station type (steel peg in concrete or marked rock (MRK)) are given in Table 13.1.

Table 13.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations and
	descriptions of station type.

River	EWR	Cross- Station			Horizontal angle from orientation	Eald ¹⁰ (m)
River	Site No.	section	Set-up Orientation		station to cross-section (dec. deg.)	
		٨	3.2(SPC)	3.1(PIC)	180.000	99.936
		A		3.3(MRK)	0.000	89.151
			3.4(MRK)	3.2(SPC)	58.187	89.421
Rondegat	3			3.3(MRK)	48.440	
		В		3.5(SPC)	0.000	88.319
				3.6(MRK)	258.402	95.931
				3.7(MRK)	0.000	87.705

¹⁰ Elevation above local datum.

Flood type	Daily average peak (m ³ /s)	Duration (days)	Volume (MCM)	Number requested	Months		
Intra-annual Class (i.e., each flood has a return period of 1:1)							
Class 1	0.32	3	0.05	4	April - June September - November		
Class 2	0.64	3	0.11	3	June- September		
Class 3	1.28	4	0.22	2	June- September		
Class 4	2.56	4	0.44	2	June- September		
Inter-annual C	lass (return period giv	/en below)					
1:2	2.8	7	1.02	Present	Not stipulated		
1:5	3.9	8	1.3	Present	Not stipulated		
1:10	6.5	8	1.88	Present	Not stipulated		
1:20	11.0	10	2.87	Present	Not stipulated		

Table 13.2Summary of the flood requirements for Rondegat in E10G

13.3.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10G.
Monitor at:	EWR Site 3.
Baseline data:	Comprehensive Reserve Determination Study (DWAF 2005).

13.3.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

13.3.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 13.3.

Table 13.3	Water quality RQOs and TPCs for Rondegat in E10)G
------------	---	----

Component	Value	Monitor at	TPCs	
Salts	1	1		
MgSO ₄ (mg/)	<23		>23	
Na ₂ SO ₄ (mg/)	<33	EWR Site 3 (2006);	>33	
MgCl ₂ (mg/)	<30	Periodic field	>30	
CaCl ₂ (mg/)	<57	measurements	>57	
NaCl (mg/)	<191		>191	
Physical				
Water temperature	Not	No known tomporaturo do	ependencies for biota in this reach.	
(oC)	specified	No known temperature de	ependencies for blota in this reach.	
рН	5.2 – 7.0		>6	
EC (mS m ⁻¹)	<10	Periodic field		
Dissolved oxygen (DO) (mg -1)	> 6.0	measurements	<6.0	
Toxics				
Ammonia as NH ₃ (mg	< 0.007	Periodic field	None available	
-1)	< 0.007	measurements		
Nutrients				
Nitrates as N (mg -1)	<0.020	E1H006		
Phosphorus as PO4-P (mg -1)	<0.010	E1H006	None available	

13.3.2.3 Geomorphology

	1 55
Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	EWR Site 2 (2006) - Box 13.1.
Monitor at:	EWR Site 3 (2006).
Baseline data:	DWAF (2005) – single data collection.

13.3.2.3.1 Narrative

A riffle run sequence, with aquatic vegetation and stones in current, must be present.

13.3.2.3.2 <u>Numerical</u>

The suggested numerical limits to achieve the above narrative RQOs are given in Table 13.4.

Table 13.4Geomorphological RQOs and TPCs for Rondegat in E10G

Key habitats					
Aquatic vegetation in and out of current	Must be present	None available			
Stones-in-current, including riffle and run	Must be present over at least 50% of the site	None available			

13.3.2.4 Riparian vegetation

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	EWR Site 3 (2006) - Box 13.1.
Monitor at:	EWR Site 3 (2006)
Baseline data:	DWAF (2005) – single data collection.

13.3.2.4.1 Narrative

The indigenous riparian vegetation should be intact with no aliens present.

13.3.2.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 13.5.

Component	Species	RQO	TPCs	
Aquatic Zone	Azolla filiculoides*	None present.	Present	
Aquatic Zone	Lemna gibba	None present.	Present	
Aquatic Zone	Plants totally immersed during high		None available	
Lower Wet Bank	Juncus lomatophyllus	Low density on coarse sandy substrates.	None available	
Lower Wet Bank	Isolepis prolifer	Low density on coarse sandy substrates exposed during lower flows.	None available	
Lower Wet Bank	Paspalum urvillei*	Low leaf density around edges of waterways during dry season.	None available	
Upper Wet Bank	Phragmites australis	Not present.	None available	
Upper Wet Bank	Prionium serratum	Narrow banding should be present	None available	

Table 13.5 Riparian vegetation RQOs and TPCs s for Rondegat in E10G; * = exotic species.

Component	Species	RQO	TPCs	
		on pebbles and coarse sandy substrates exposed during lower flows.		
Wet Bank	Salix mucronata	Must be present.	Absent	
Upper Wet Bank	Brabejum stellatifolium	Lining parts of rivers and streams exposed to annual winter high flows	None available	
	Sesbania punicea*	None present.	Present	
All zones	Acacia longifolia*, A. mearnsii*, A. melanoxylon*, Eucalyptus camaldulensis*	None present.	Present	

13.3.2.5 Macroinvertebrates

omprehensive Reserve Determination Study (DWAF 2005).
WR Site 3 (2006) - Box 13.1.
WR Site 3 (2006).
WAF (2005) – single data collection.
1

13.3.2.5.1 Narrative

The macroinvertebrate community should be dominated by sensitive mountan stream taxa.

13.3.2.5.2 <u>Numerical</u>

The suggested numerical limits to achieve the above narrative RQOs are given in Table 13.6.

Table 13.6 Macroinvertebrate RQOs and TPCs for Rondo	egat in E10G
--	--------------

Component			RQO	TPCs	
	Order	Таха	RQU	TPCS	
		Baetidae	At least 7 species overall at site (all biotopes combined) on any sampling occasion	Fewer than 7 species present overall at site (all biotopes combined)	
	Ephemeroptera	Demoreptus capensis	Present in summer	Absent in summer	
		Leptophlebiidae	Present in at least 80% of replicate samples	Fewer than Baetidae in	
		Heptageniidae	Present in summer; dominant (over Baetidae)	summer samples	
	Coleoptera	eoptera Any > 3 families		< 3 families present	
Family presence/ absence	Trichoptera	Any	> 3 families	Fewer than 5 species present overall and < 3 of the following families: Barbarochthonidae, Leptoceridae, Petrothrincidae, Sericostomatidae	
		Any	> 1 family		
	Odonata	Corydalidae	Present in summer	Absent	
		Philopotamidae	Present in winter		
	Discontant	Blephariceridae	Present in low numbers in winter	Absent from winter samples	
	Plecoptera	Notonemouridae	Present in 50% of replicate samples of stones-in-current	Absent from samples	
SASS results	SASS Score		>170	<150	
SASS results	ASPT		>7.5	<8	

13.3.2.6 Fish	
Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	EWR Site 3 (2006) - Box 13.1.
Monitor at:	EWR Site 3 (2006).
Baseline data:	DWAF (2005) – single data collection, Paxton (unpublished data), SAIAB database
Gear:	The RQOs for the fish assemblages assume the application a range of gear types including: small fyke nets (20-m wing length) in tributary pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the
	same gear type.

13.3.2.6.1 Narrative

At least three of the following species should be present in the catch: *Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus.* There should be no alien species present.

13.3.2.6.2 <u>Numerical</u>

The suggested numerical limits to achieve the above narrative RQOs are given in Table 13.7.

	Sub- component	RQOs	TPCs
Indigenous	Species assemblage	At least three of the following species should be present in the catch: Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus	
Indig	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 40 mm FL for small cyprinids; < 70 mm TL for large cyprinids).	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
Alien	Species	There should be no alien fish species present in	
Ali	assemblage	the tributaries	Presence of any alien fish
	Demographics	No alien fish species present	aller list
	Fish Health	No alien fish species present	

 Table 13.7
 Fish RQOs and TPCs for Rondegat in E10G

13.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 13.8.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E10G	26.88	1.91	4.21	16%	24.97	7%	В

 Table 13.8
 Groundwater Reserve Requirements for E10G

13.5 WETLANDS

Not applicable (see Table 6.3).

14 E10F AND E10E (R33) RESOURCE QUALITY OBJECTIVES

14.1 UPDATED RESOURCE CLASSIFICATION

Queterneru		Target Ecological Categories					
Quaternary	Mains	tem		Wetlands			
			Boskloof River, upstream of 32°33'33.31"S; 19° 3'27.17"E (FEPA)	A/B	wetland area		
E10E	Olifants	D	Boskloof River, downstream of 32°33'33.31"S; 19° 3'27.17"E	D	5.8% of		
			Boontjies River, upstream of 32°34'43.37"S; 19° 2'8.04"E	A/B	quaternary, 10% in AB		
			Boontjies River, downstream of 32°34'43.37"S; 19° 2'8.04"E.	D	10 /0 III AD		
E10F	Olifonto		Heks River, upstream of 32°26'15.71"S; 18°58'44.78"E (FEPA)	A/B			
	Olifants	D	Heks River, downstream of 32°26'15.71"S; 18°58'44.78"E	D]-		
			Palmietfontein River	D			

14.2 OLIFANTS RIVER IN E10F (AND E10E)

Key monitoring points for the Olifants River in E10F (and E10E):

- E1H013 (Olifants River at Citrusdal; Figure 14.1).
- EWR Site 1 (2006; Box 14.1; Figure 14.3).

Figure 14.1 E1H013 on the Olifants River at the Citrusdal Bridge

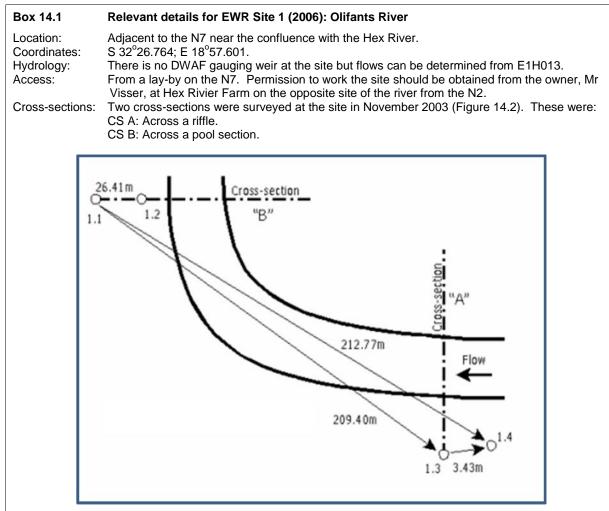


Figure 14.2 Plan layout for EWR Site 1.

Fixed stations were also installed at the site in November 2003. The elevations (above a local datum; Eald) of the fixed stations, the orientations of cross-sections relative to fixed stations and a description of the station type (steel peg in concrete or marked rock (MRK)) are given in Table 14.1.

Table 14.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations and
	descriptions of station type.

	EWR Site No.	Cross-section			Horizontal angle from	1
River			Set-up	Orientation	orientation station to cross- section (dec. deg.)	Eald ¹¹ (m)
Olifants		А	1.3(SPC)	1.4(MRK)	265.394	91.995
	1	В	1.1(SPC)	1.2(MRK) 1.3 1.4	0.000 309.816 309.984	88.466 91.836

¹¹ Elevation above local datum.

Figure 14.3 EWR 1 (Olifants River; 2006) from the N2

14.2.1 Hydrology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.
Monitor at:	E1H013 (Figure 14.1).
Baseline data:	http://www.dwa.gov.za/Hvdrologv/HvDataSets.aspx?Station=E1H013.

14.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to D Category.

14.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below, and the detail with respect to flood requirements is given in Table 14.2.

Mean flow in driest month (February): 0.6 m³/s Minimum Dry Season Lowflow: 0.01 m³/s.

Table 14.2 Summary of the flood requirements for E10F.

Flood type	Daily average peak (m ³ /s)	Duration (days)	Volume (MCM)	Number requested	Months
Intra-annual Cl	ass (i.e., each flood h	as a return per	riod of 1:1)		
Class 1	9	3	3.3	10	April - June September - November
Class 2	20	6	6.5	1	June- September
Class 3	36	7	12.4	1	June- September
Class 4	85	10	30.4	0	Not applicable
Inter-annual Cl	ass (return period giv	en below)			
1:2	380	12	52.5	Present	Not stipulated
1:5	530	14	81.29	Present	Not stipulated
1:10	665	14	164.4	Present	Not stipulated
1:20	870	14	164.4	Present	Not stipulated

14.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.
Monitor at:	E1H013 (Olifants River at Citrusdal) and with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS_pri_txt.asp (Olifants W).

14.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

14.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 14.3.

Component	Value	Monitor at	TPCs			
Salts						
MgSO ₄ (mg/)	< 37	E1H013	>37			
Na ₂ SO ₄ (mg/)	< 51	E1H013	>51			
MgCl ₂ (mg/)	< 51	E1H013	>51			
CaCl ₂ (mg/)	< 105	E1H013	>105			
NaCl (mg/)	< 389	E1H013	>389			
Physical						
Water temperature (°C)	Not specified	No known temperature dependencies for biota in this reach.	None available			
pH	6.5 – 9.0	E1H013	>6			
EC (mS/ m)	< 15	E1H013	>20			
Dissolved oxygen (DO) (mg/)	> 6.0	Periodic field measurements	<5.8			
Toxics						
Ammonia as NH ₃ (mg/)	< 0.007	Periodic field measurements	>0.006			
Nutrients						
Nitrates as N (mg/)	< 0.100	E1H013	>0.09			
Phosphorus as PO ₄ -P (mg/)	< 0.020	E1H013	>0.014			
Bacteria						
E. coli	0	E1H016	>0			

Table 14.3 Water quality RQOs and TPCs for E10F

14.2.3 Geomorphology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.
Monitor at:	EWR Site 1 (2006) - Box 14.1.
Baseline data:	DWAF (2005) – single data collection.

14.2.3.1 Narrative

The river channel structure and habitats should be in a minimum of a D-category. A riffle/run-pool sequence should be present at all flows. Sediment-size should be consistent with a Western Cape foothill river.

14.2.3.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 14.4.

Component	Values: Cross-section A	Values: Cross-section B	TPCs				
Dry season bed material compo	Dry season bed material composition (mm)						
D16	0.6	0.4	> 20% increase or decrease				
D50	48	0.7	> 20% increase or decrease				
D84	180	0.9	> 30% increase or decrease				
Channel geometry							
Dry season water surface slope (m/m)	0.015	0.00005	> 5% increase or decrease				
Active channel width (m)	20.5	14.5	> 5% increase or decrease				
Bankfull width (m)	27.5	28	> 5% increase or decrease				
Key habitats							
Aquatic vegetation in and out of current	Must be present	None available					
Stones-in-current, including riffle and run	Must be present over at le	None available					

Table 14.4Geomorphological RQOs and TPCs for E10F

14.2.4 Riparian vegetation

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.
Monitor at:	EWR Site 1 (2006) - Box 14.1.
Baseline data:	DWAF (2005) – single data collection.

14.2.4.1 Narrative

The indigenous marginal vegetation should be intact and dominated by indigenous species. There should be no Sesbania punicea and only isolated individuals of Acacia longifolia, A. mearnsii, A. melanoxylon and Eucalyptus camaldulensis present.

14.2.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 14.5.

Component	Species	RQO	TPCs			
Indigenous species						
Aquatic Zone Lemna gibba		None present.	Present			
Lower Wet Bank	Panicum repens	Low density on channel margins.	None available			
Lower Wet Bank	Juncus lomatophyllus	Low density on coarse sandy substrates.	None available			
Lower Wet Bank	Isolepis prolifer	Low density on coarse sandy substrates exposed during lower flows.	None available			
Upper Wet Bank	Phragmites australis	Only a narrow banding should be present in Wet Bank.	None available			
Upper Wet Bank	Prionium serratum Narrow banding should be preserved pebbles and coarse sandy substruction exposed during lower flows.		None available			
Wet Bank	Salix mucronata	Must be present.	None available			
Exotic species						
Aquatic Zone	Azolla filiculoides	None present.	Present			
Lower Wet Bank	Paspalum urvillei	Low leaf density around edges of waterways during dry season.	None available			
Upper Wet Bank	Sesbania punicea	None present.	Present			
All zones	Acacia longifolia, A. mearnsii, A. melanoxylon, Eucalyptus camaldulensis	Only isolated individuals present.				

 Table 14.5
 Riparian vegetation RQOs and TPCs for E10F; * = exotic species.

14.2.5 Macroinvertebrates

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E10F and E10E.
Monitor at:	EWR Site 1 (2006) - Box 14.1.
Baseline data:	DWAF (2005) – single data collection.

14.2.5.1 Narrative

The macroinvertebrate community should be representative of a slightly impacted Western Cape foothill river.

14.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 14.6.

Component			RQO	TPCs
	Order	Таха	RQU	TPCS
		Baetidae	> 4 species	<4 species
	Ephemeroptera	Demoreptus capensis	Present in summer	Absent in summer
		Leptophlebiidae	Present in at least 50% of replicate samples	-
Family presence/		Heptageniidae	Present in summer in stones-in-current / stones- out-of-current	Absent in summer
absence	Coleoptera	Any	> 3 families	< 3 families
	Trichoptera	Any	> 3 families	< 3 families
	Odonata	Any	> 1 family	Absent
		Corydalidae	Present in summer	Absent in summer
		Philopotamidae	Present in winter	Absent in winter
	Plecoptera	Notonemouridae	Present in 50% of replicate samples of stones-in- current	-
	SASS Score		>100	<90
SASS results	ASPT		>7.5	<7

Table 14.6 Macroinvertebrate RQOs and TPCs for E10F

14.2.6 Fish

Source: Applicable to: Monitor at: Baseline data: Gear:	Comprehensive Reserve Determination Study (DWAF 2005). E10F and E10E. EWR Site 1 (2006) - Box 14.1. DWAF (2005) – single data collection, Paxton (unpublished data), SAIAB database. The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type
	same gear type.

14.2.6.1 Narrative

Labeobarbus capensis should be present.

14.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 14.7.

Indigenous	Sub- component	RQOs	TPCs
	Species assemblage	There should be \geq 1 of the following fish species present in the catch: <i>Labeobarbus capensis</i>	
	Demographics	There is currently no recruitment of indigenous fish in the mainstem at E10F. All fish are expected to be >150 mm TL	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
Alien	Sub- component	RQOs	
	Species assemblage	 > 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) < 90 % Lepomis macrochirus Present: Tilapia sparrmanii 	
	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus</i> and <i>T. sparrmanii</i> and < 70 mm TL for bass)	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 $\%$ of the catch	

Table 14.7 Fish RQOs and TPCs for E10F

14.3 TRIBUTARIES

The upper reaches of the Heks (B Category) and Boskloof (B Category) tributaries (DWAF 2012d) have been identified as FEPAs. The Palmietfontein River was also identified as a FEPA, although it is currently in a D Category. Efforts should be made to improve the condition of the Palmietfontein.

Detailed hydrological RQOs cannot be set for individual tributaries with the current level of data available, however, there are data for fish and this is area is important since it supports a good representation of the indigenous species.

14.3.1 Hydrology

Basic RQOs: Appendix A.

14.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- E10E:
 - Category A/B in the Tee River, upstream of 32°33'33.31"S; 19° 3'27.17"E.
 - Category D in the Tee River, downstream of 32°33'33.31"S; 19° 3'27.17"E (DWAF 2012d).
 - Category A/B in the Boontjies River, upstream of 32°34'43.37"S; 19° 2'8.04"E.
 - Category D in the Boontjies River, downstream of 32°34'43.37"S; 19° 2'8.04"E.
- E10F:
 - Category A/B in the Heks River, upstream of 32°26'15.71"S; 18°58'44.78"E.
 - Category D in the Heks River, downstream of 32°26'15.71"S; 18°58'44.78"E (DWAF 2012d).
 - Category D in the Palmietfontein River.

14.3.1.2 Numerical

The combined incremental Reserve allocation is given in Appendix A.

14.3.2 Fish

Source: Applicable to: Monitor at:	Paxton (unpublished data) Tributaries in E10F and E10E. The Heks River: 32°26'14.21"S, 18°58'52.69"E (E10F), Tee River: 32°34'3.80"S, 19° 2'33.49"E (E10E)
Baseline data:	Paxton (unpublished data), SAIAB database.
Gear:	The RQOs for the fish assemblages assume the application a range of gear types including: small fyke nets (20-m wing length) in tributary pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

14.3.2.1 Narrative

Barbus anoplus and Austrolganis barnardi should be present. There should be no alien species present.

14.3.2.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 14.7.

Indigenous	Sub- component	RQOs	TPCs
	Species assemblage	At least one of the following species should be present in the catch: <i>Barbus anoplus, Austrolganis barnardi</i>	
	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 40 mm FL for small cyprinids; < 70 mm TL for large cyprinids)	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
Alien	Sub- component	RQOs	
	Species assemblage	There should be no alien fish species present in the tributaries	
	Demographics	No alien fish species present	Presence of any alien species
	Fish Health	No alien fish species present	

Table 14.8Fish RQOs and TPCs for E10F tributaries

14.4 GROUNDWATER - OVERVIEW

The area is dominated by fractured, folded TMG aquifers (Peninsula and Nardouw aquifers) on both sides of the valley and thick alluvium aquifer which occurs along the Olifants River course underlain by the Bokkeveld Group. The thick alluvium deposits can be considered an extension of the river system storing surplus water from flood events and releasing the water back into the river during low flow conditions.

В

В

8%

9%

28.18

25.83

The groundwater Reserve requirements per quaternary catchment, based on the surface water low flow requirements, are given in Table 14.9.

24%

18%

Table 14.9	Groundwater Reserve Requirements for E10E and E10F.						
Quaternary	Recharge	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve	Water Balance (hm ³ /a)	GW Stress Index	PS

7.35

5.13

E10E

E10F

30.67

28.28

2.49

2.45

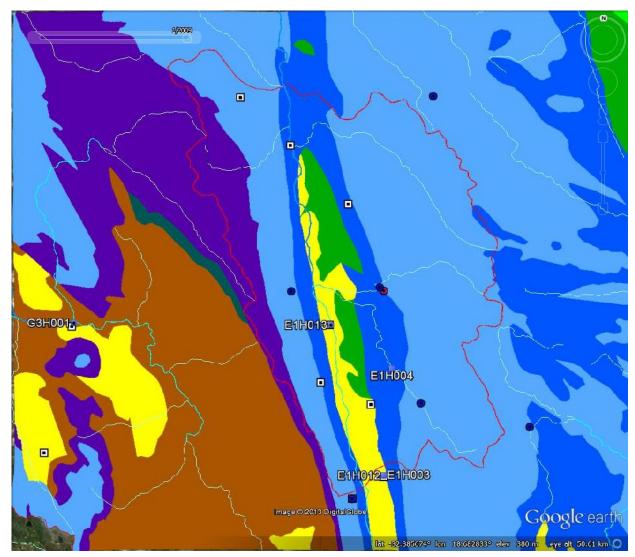


Figure 14.4 Map of RU33 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)

14.5 ALLUVIUM AQUIFER

Groundwater is extensively used in the area and possibly subjected to over-abstraction within the Olifants River valley during dry periods, which could have a negative impact on water availability and water quality, as well as the low flow conditions in the receiving surface waters. The intensive irrigation could lead to declining water quality due to the effect of return flows. Urban and industrial areas could also have an impact on water quality.

14.5.1 Water quantity

The setting of water quantity related RQOs (see Table 14.10) is aimed at maintaining or improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

14.5.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

14.5.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 14.10.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
	Abstraction	All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
Available Yield	Water level	No negative trend between peak drawdowns during dry seasons	ers from abstraction impact n/a n/a	Water level
	trend	Water level recovers from abstraction impact during wet season.		monitoring network
Discharge	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	required
Discharge Low flow in river		Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.6 m ³ /s / 0.01 m ³ /s	E1H013

Table 14.10Water quantity RQOs for the Alluvium Aquifer in RU33

14.5.2 Water quality

The setting of water quality related RQOs (see Table 14.11) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

14.5.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

14.5.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 14.11.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂	Fitness for use for domestic use	< 11 mg/l	Extension of WMS
Salts	EC	after treatment and shall not	< 170 mS/m	network required
	E-coli		0 counts / 100 ml	Extension of WMS
Pathogens	Total Coliform		10 counts / 100ml	network & parameters required

Table 14.11Water quality RQOs for the Alluvium Aquifer in RU33

14.6 TMG AQUIFERS

Groundwater is used in the area to supplement the water use from the Olifants River during dry periods, which could have a negative impact on water availability and water quality, as well as the low flow conditions in the receiving surface waters.

14.6.1 Water quantity

The setting of water quantity related RQOs (see Table 14.12) is aimed at maintaining the groundwater discharge towards wetland and river FEPAs and ensuring sufficient yield for all users.

14.6.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

14.6.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 14.12.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Abstraction		All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
Available Yield	Water level	No negative trend between peak drawdowns during dry seasons	n/a	Water level monitoring
	trend	Water level recovers from abstraction impact during wet season.	n/a	network required
Discharge	Buffer zones	Around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m	

Table 14.12Water quantity RQOs for the TMG Aquifer in RU33

14.6.2 Water quality

The setting of water quality related RQOs (see Table 14.13) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

14.6.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

14.6.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 14.13.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂	after treatment, and shall not deteriorate from natural	< 11 mg/l	Extension of WMS
Salts	EC		< 170 mS/m	network required
	E-coli		0 counts / 100 ml	Extension of WMS
Pathogens	Total Coliform		10 counts / 100ml	network & parameters required

Table 14.13Water quality RQOs for the TMG Aquifer in RU33

14.7 WETLANDS

Not applicable (see Table 6.3).

15 E10D (R40), E10C (R42) AND E10B (R44) RESOURCE QUALITY OBJECTIVES

15.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories				
Quaternary	Mainstem		Key tributaries		Wetlands
E10D	Olifants	С	Tee upstream of 32°47'41.57"S; 19° 5'36.76"E (FEPA)	A/B	wetland area 5.4% of
EIUD	Olliants	C	Tee downstream of 32°47'41.57"S; 19° 5'36.76"E	D	quaternary, 16% in AB
E10C	Olifants (FEPA)	В	Ratel (FEPA) and Dwars (FEPA)	В	wetland area 1.2% of quaternary, 85% in AB
E10B		С	Unnamed tributary with confluence at 32°58'19.96"S; 19°10'57.03"	D	
EIUB		C	Unnamed tributary with confluence at 33°00'25.19"S; 19°12'05.90" (FEPA)	В	-

15.2 OLIFANTS RIVER IN E10D, E10C AND E10B

While E10D was not selected as a river priority (see Table 6.3), certain RQOs are relevant as provided below. A section of the Olifants mainstem in E10C (R42) and in E10B (R44) (both reaches in B Categories) has been identified as FEPAs, and their condition should not be allowed to deteriorate.

15.2.1 Hydrology

Basic RQOs: Appendix A.

15.2.1.1 Narrative

Flows shall be sufficient to maintain:

- E10D in C Category;
- E10C in B Category (FEPA);
- E10B in B Category (FEPA).

15.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (February):
E10D: 0.41 m³/s
E10C: 0.19 m³/s
E10B: 0.1 m ³ /s
Even in extreme drought flow should not drop below:
E10D: 0.004 m³/s
E10C: 0.001 m ³ /s
E10B: 0.001 m³/s

15.2.2 Water quality

15.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

15.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits cannot be set with the current level of data available.

15.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

15.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

15.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

15.2.6 Fish

Source: Applicable to: Monitor at: Baseline data: Gear:	 Paxton (unpublished data), E10D. River Node R40: 32°43'56.66"S, 19° 2'51.87"E Paxton (unpublished data), SAIAB database. The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the
	between gear types. Proportions should therefore be compared within catches of the same gear type.

15.2.6.1 Narrative

Labeobarbus capensis should be present.

15.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 15.1.

	Sub- component	RQOs	TPCs
sno	Species assemblage	There should be ≥1 of the following fish species present in the catch: <i>Labeobarbus capensis</i>	
Indigenous	Demographics	There is currently no recruitment of indigenous fish in the mainstem at E10D. All fish are expected to be >150 mm TL.	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
c	Species assemblage	 > 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) < 90 % Lepomis macrochirus Present: Tilapia sparrmanii 	
Alien	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus</i> and <i>T. sparrmanii</i> and < 70 mm TL for bass).	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	

15.3 TRIBUTARIES

The Tee (C Category), Ratel (C Category), Dwars (B Category) and another tributary which is not named in the DWA shapefiles (PES of B) have been identified as FEPAs. Their condition should not be allowed to deteriorate further and efforts should be made to improve the condition of the Tee and the Ratel.

Detailed hydrological RQOs cannot be set for individual tributaries with the current level of data available, however, there are data for fish in the Thee River and this is area is important since it supports a good representation of the indigenous species.

15.3.1 Hydrology

Basic RQOs: Appendix A.

15.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category B in the Thee River, upstream of 32°33'33.31"S; 19° 3'27.17"E;
- Category A/B in the Ratel River;
- Category A/B in the Dwars River.

15.3.1.2 Numerical

The combined incremental Reserve allocations are given in Appendix A.

15.3.2 Fish

The Tee River supports a good representation of the indigenous fish species.

Source:	Paxton (unpublished data),
Applicable to:	E10D tributaries.
Monitor at:	Thee River, 32°48'0.88"S; 19° 5'13.08"E.

Baseline data: Paxton (unpublished data), SAIAB database.

Gear: The RQOs for the fish assemblages assume the application a range of gear types including: small fyke nets (20-m wing length) in tributary pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

15.3.2.1 Narrative

At least three of the following five species should be present at the site Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon and Galaxias zebratus.

15.3.2.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 15.2.

Table 15.2	Fish RQOs and TPCs for E10D tributaries
Table 15.2	FISH ROOS and IPCS for ETUD tributaries

	Sub- component	RQOs	TPCs
Indigenous	Species assemblage	At least three of the following five species should be present in the catch: Labeobarbus capensis, Austroglanis gilli, Austroglanis barnardi, Barbus calidus, Pseudobarbus phlegethon, Galaxias zebratus	
Indig	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 40 mm FL for small cyprinids; < 70 mm TL for large cyprinids).	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
Alien	SpeciesThere should be no alien fish species present in the assemblageassemblagetributaries		Presence
	Demographics	No alien fish species present	Flesence
	Fish Health	No alien fish species present	

15.4 GROUNDWATER – OVERVIEW

The area is dominated by fractured, folded TMG aquifers (Peninsula and Nardouw aquifers) on both sides of the valley and an alluvium aquifer which occurs along the Olifants River course. The thick alluvium deposits can be considered an extension of the river system storing surplus water from flood events and releasing the water back into the river during low flow conditions.

The groundwater Reserve requirements for the whole quaternary catchment, based on the surface water low flow requirements, are given in Table 15.3.

 Table 15.3
 Groundwater Reserve Requirements for E10D

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E10D	24.35	0.50	5.74	24%	23.85	2%	A

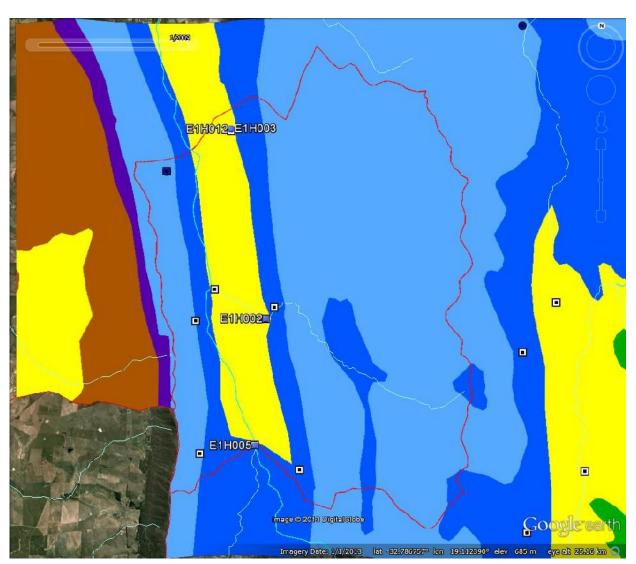


Figure 15.1 Map of RU40 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)

15.5 ALLUVIUM AQUIFER

Groundwater is subjected to possible over-abstraction within the Olifants River valley during peak demand period, which could have a negative impact on water availability and water quality, as well as the low flow conditions in the receiving surface waters. The irrigated areas (which are located along the river valley) contribute to the groundwater recharge but have a possible water quality threat to the existing and future users. Urban and industrial areas could also have an impact on water quality.

15.5.1 Water quantity

The setting of water quantity related RQOs (see Table 15.4) is aimed at maintaining or improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

15.5.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

15.5.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 15.4.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
	Abstraction	All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
Available Yield	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Water level monitoring
		Water level recovers from abstraction impact during wet season.	n/a	network required
Discharge	Buffer zones	Around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m	

Table 15.4	Water quantity	y RQOs for the	Alluvium Ad	puifer in RU40
	mator quantity	y 11 a 0 0 1 01 1110		

15.5.2 Water quality

The setting of water quality related RQOs (see Table 15.5) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

15.5.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

15.5.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 15.5.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Extension of WMS
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	network required
Pathogens	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS network &
	Total Coliform	naturai background	10 counts / 100ml	parameters required

 Table 15.5
 Water quality RQOs for the Alluvium Aquifer in RU40

15.6 TMG AQUIFERS

Groundwater is used in the area to supplement the water use from the Olifants River during dry periods, which could have a negative impact on water availability and water quality, as well as the low flow conditions in the receiving surface waters.

15.6.1 Water quantity

The setting of water quantity related RQOs (see Table 15.6) is aimed at maintaining or improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

15.6.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

15.6.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 15.6.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
	Abstraction	All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
Available Yield	Water level	No negative trend between peak drawdowns during dry seasons	n/a	Water level monitoring network required
	trend	Water level recovers from abstraction impact during wet season.	n/a	

Table 15.6	Water quantity RQOs for the TMG Aquifer in RU40

15.6.2 Water quality

The setting of water quality related RQOs (see Table 15.7) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

15.6.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

15.6.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 15.7.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Extension of
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	WMS network required
Dethemene	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS network &
Pathogens	Total Coliform		10 counts / 100ml	parameters required

 Table 15.7
 Water quality RQOs for the TMG Aquifer in RU40

15.7 WETLANDS

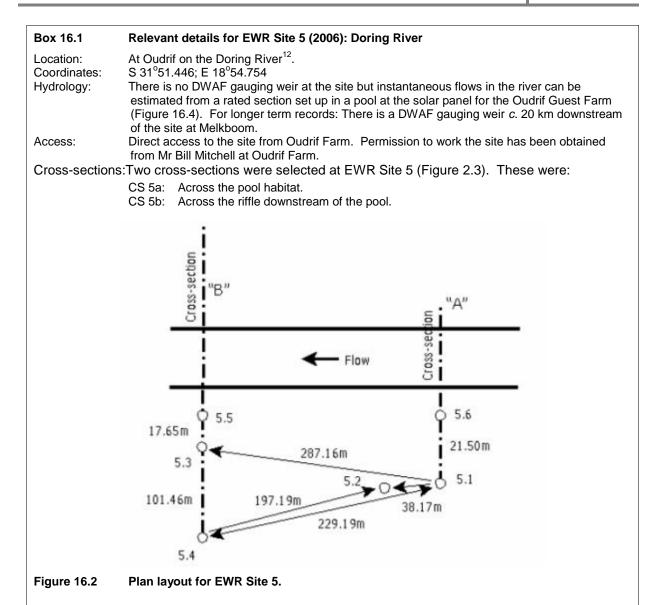
Not applicable (see Table 6.3).

16 E24M (R14) RESOURCE QUALITY OBJECTIVES

16.1 UPDATED RESOURCE CLASSIFICATION

Queternery		Target Ecological Categories					
Quaternary	Mainstem Key tributarie		Key tributaries	r tributaries			
			Olienhouts	A/B			
E24M	Doring	oring B	Gifberg	A/B	wetland area 0.001% of		
	Doning	В	Unnamed tributary with confluence at 31°52'35.81"S; 18°46'48.75"	D	quaternary, 100% in AB		

16.2 DORING RIVER IN E24M


The Doring River downstream of the Gifberg confluence has been identified as a FEPA, together with its tributaries in this quaternary, the Gifberg and the Olienhouts Rivers. All are currently in a B Category.

Key monitoring points for the Doring River in E24M:

- E2H003 (Doring River at Melkboom; Figure 16.1).
- EWR Site 5 (2006; Box 16.1; Figure 16.3).

Figure 16.1 E2H003 at Melkboom on the Doring River (<u>www.dwa.gov.za</u>)

Fixed stations were also installed at the site in November 2003. The elevations (above a local datum; Eald) of the fixed stations, the orientations of cross-sections relative to fixed stations and a description of the station type (steel peg in concrete or marked rock (MRK)) are given in Table 16.1.

Table 16.1 Elevations of fixed stations, orientations of cross-sections relative to fixed stations and descriptions of station type.

	EWR Site		Station		Horizontal angle from	42
River	No.	Cross-section		Orientation	orientation station to cross- section (dec. deg.)	Eald ¹³ (m)
Doring	5	A	5.1(MRK)	5.6(MRK) 5.2(MRK) 5.3 5.4(MRK)	0.000 84.683 96.375 115.059	92.028 98.229 95.094 98.590
		В	5.3(MRK)	5.5(MRK) 5.4	0.000 180.000	90.643

¹² The solar pump delimits the upstream extent of the site.

¹³ Elevation above local datum.

Figure 16.3 EWR 5 (2006) in E24M

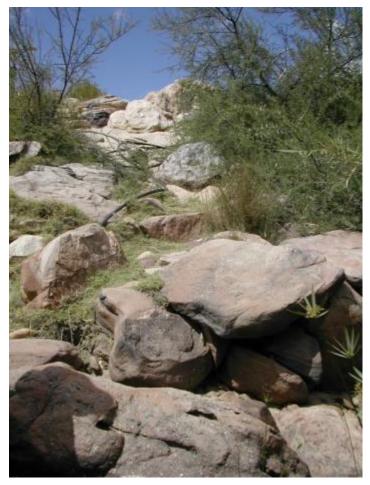


Figure 16.4 Lateral orientation of the rated section set up in a pool at the solar panel for the Oudrif Guest Farm

16.2.1 Hydrology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Basic RQOs:	Appendix A.
Applicable to:	E24M.
Monitor at:	E2H003 (Figure 16.1).
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E2H003.

16.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to B Category.

16.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below, and the detail with respect to flood requirements is given in Table 16.2.

Note: The Doring River is naturally seasonal, thus the minimum dry season lowflow is zero. However, the duration of no-flow conditions in the dry season is important in terms of implementation of the Ecological Reserve. Flow in NOVEMBER should NEVER drop below 0.03 m^3 /s, and flow in April should NEVER drop below 0.03 m^3 /s.

Mean flow in November and April: 0.03 m³/s Even in extreme drought, November and April flow should not drop below: 0.03 m³/s.

Flood type	Daily average peak (m ³ /s)	Duration (days)	Volume (MCM)	Number requested	Months
Intra-annual Cla	ss (i.e., each flood ha	s a return peri	od of 1:1)		
Class 1	35.05	2	4	6	September-June
Class 2	70.11	4	15	2	June-September
Class 3	140.22	5	27	2	June-September
Class 4	280.43	6	59	1	June-September
Inter-annual Cla	ass (return period give	n below)			· · · · ·
1:2	311.59	7	136.88	Absent	Not applicable
1:5	535.57	8	140.46	Present	Not stipulated
1:10	1057.70	8	234.56	Present	Not stipulated
1:20	1396.40	8	284.65	Present	Not stipulated

Table 16.2Summary of the flood requirements for E24M.

16.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E24M.
Monitor at:	E2H003 (Doring River at Melkboom) and with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS_pri_txt.asp (Olifants W).

16.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a).

16.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a). Additional numerical limits to achieve the above narrative RQOs are given in Table 16.3.

Component	Value	Monitor at	TPCs	
Salts				
MgSO ₄ (mg ⁻¹)	<23		>23	
$Na_2SO_4 (mg^{-1})$	<33		>33	
MgCl ₂ (mg ⁻¹)	<30	E2H003	>30	
$CaCl_2 (mg^{-1})$	<57		>57	
NaCl (mg ⁻¹)	<191		>191	
Physical				
Water temperature (°C)	25-28 °C (November to		>28	
	January)	_		
рН	6.5 – 8.5	EWR Site 5/E2H003	>7	
EC (mS m ⁻¹)	<50		>50	
Dissolved oxygen (DO) (mg ⁻¹)	> 6.0		<6.0	
Toxics				
Ammonia as NH ₃ (mg ⁻¹)	<0.007	EWR Site 5/E2H003	>0.007	
Nutrients				
Nitrates as N (mg ⁻¹)	<0.020	EWR Site 5/E2H003	>0.020	
Phosphorus as PO ₄ -P (mg ⁻¹)	<0.020	EWR Sile 3/EZH003	>0.020	

Table 16.3 Water quality RQOs and TPCs for E24M

16.2.3 Geomorphology

mprehensive Reserve Determination Study (DWAF 2005).
ble 16.4.
4M.
/R Site 5 (2006) - Box 16.1.
/AF (2005) – single data collection.

16.2.3.1 Narrative

The river channel structure and habitats should be in a minimum of a B-category. A riffle/run-pool sequence should be present at all flows. Deep pools should be present. Sediment-size should be consistent with a Western Cape foothill river.

16.2.3.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given below.

•	······································					
Component	Values: Cross-section A	Values: Cross-section B	TPCs			
Dry season bed material co	Dry season bed material composition (mm)					
D ₁₆	0.4	8 > 20% increase or de				
D ₅₀	18	45	> 20% increase or decrease			
D ₈₄	30	180	> 30% increase or decrease			
Channel geometry						
Dry season water surface slope (m/m) 0.00006		0.05	> 5% increase or decrease			
Active channel width (m)	34	60	> 5% increase or decrease			
Bankfull width (m)	nkfull width (m) 38		> 5% increase or decrease			
Key habitats						
Aquatic vegetation in and out of current	-	Present all year (this habitat is threatened by livestock)	None available			
Stones-in-current,		All winter, spring and early summer	None available			

Table 16.4 Geomorphological RQOs and TPCs for E24M

16.2.4 Riparian vegetation

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E24M.
Monitor at:	EWR Site 5 (2006) - Box 16.1.
Baseline data:	DWAF (2005) – single data collection.

16.2.4.1 Narrative

The marginal vegetation should be intact and dominated by indigenous species. The presence of *Nerium oleander* must be controlled.

16.2.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 16.5.

Component	Species	RQO	TPCs
Aquatic Zone	Azolla filiculoides*	None present.	Present
Lower Wet Bank	Paspalum urvillei*	Low leaf density around edges of waterways during dry season.	None available
Lower Wet Bank	Cyperus textilis	Spread between LD and Lower Wet Bank with concentration in Upper Wet Bank	None available
Lower Dynamic and Wet Bank	Phragmites australis	Only a narrow banding should be present in Wet Bank.	None available
Dynamic Acacia karoo		Present lining parts of rivers and streams exposed to annual winter high flows	None available
	Nerium oleander	Present but not dominant	Any increase
All zones	Acacia longifolia*, A. mearnsii*, A. melanoxylon*, Eucalyptus camaldulensis*	Not present.	Present

Table 16.5Riparian vegetation RQOs and TPCs for E24M; * = exotic species.

16.2.5 Macroinvertebrates

Comprehensive Reserve Determination Study (DWAF 2005).
E24M.
EWR Site 5 (2006) - Box 16.1.
DWAF (2005) – single data collection.

16.2.5.1 Narrative

The macroinvertebrate community should be dominated by Ephemeroptera, Trichoptera.

16.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 16.6.

Component			RQO	TPCs
	Order	Таха	RQU	TFUS
Family	Ephemeroptera Leptophlebiidae		present 80% of the time (cumulative for the site)	Absent
presence/ absence	Trichoptera: Ecnomidae, Philopotamidae (winter), Hydropsychidae, Hydroptilidae		at least 2 present	None availale
	Diptera Simuliidae		Present in <50% of replicate samples of stones-in-current	None availale
SASS	SASS Score		>120	<110
results	ASPT		>6	<6

Table 16.6 Macroinvertebrate RQOs and TPCs for E24M

16.2.6 Fish

Source: Applicable to: Monitor at: Baseline data: Gear:	Comprehensive Reserve Determination Study (DWAF 2005). E24M. EWR Site 5 (2006) -Box 16.1. DWAF (2005) – single data collection, Paxton (unpublished data), SAIAB database The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types.
	between gear types. Proportions should therefore be compared within catches of the same gear type.

16.2.6.1 Narrative

At least one of the following species should be present in the catch: *Labeobarbus capensis*, *Barbus serra* and *Labeo seeberi*.

16.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 16.7.

	Sub- component	RQOs	TPCs
Indigenous	Species assemblage	At least one of the following three species should be present in the catch: Labeobarbus capensis, Barbus serra, Labeo seeberi	
Ind	Demographics	There is no recruitment of indigenous fish in the mainstem at E24M	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
ue	Species assemblage	 > 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) < 90 % Lepomis macrochirus Present: Tilapia sparrmanii 	
Alien	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L.</i> <i>macrochirus</i> and < 70 mm TL for bass)	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	

Table 16.7Fish RQOs for E24M.

16.3 TRIBUTARIES

The Gifberg and the Olienhouts Rivers (both in B Category), tributaries to the Doring in this quaternary have been identified as FEPAS.

Detailed RQOs cannot be set for the tributaries with the current level of data available.

16.3.1 Hydrology

Basic RQOs: Appendix A.

16.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category A/B in the Gifberg River;
- Category A/B in the Olienhouts River;
- Category D in the unnamed tributary with confluence at 31°52'35.81"S; 18°46'48.75"E.

16.3.1.2 Numerical See Appendix A.

16.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 16.8.

Table 16.8Groundwater Reserve Requirements for E24M.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E24M	8.41	0.50	0.71	8%	7.91	6%	В

16.5 WETLANDS

Not applicable (see Table 6.3).

17 E40C (R11) AND E40D (R17) RESOURCE QUALITY OBJECTIVES

17.1 UPDATED RESOURCE CLASSIFICATION

Quaternary	Target Ecological Categories					
Qualemary	Mainstem		Key tributaries		Wetlands	
E40C	Oorlogskloof (FEPA) C ¹⁴		Unnamed tributary through Niewoudville	В	 > 3 000 hectares of wetland (E40C and E32C); individual wetlands range from <1 hectare to 300. These should be protected. (wetland area 0.001% of quaternary, 100% in AB) 	
E40D	Koebee (FEPA)	В	Klein Koebee	B (A/B (FEPA)	-	

17.2 OORLOGSKLOOF RIVER IN E40C AND KOEBEE RIVER IN E40D

Key monitoring points in E40C and E40D:

- E40C-06492: Oologskloof River sampling site at Brakwater: -31° 27' 52.3368", 19° 4' 51.3192" (Figure 17.1).
- E40D: Koebee River sampling site at Rietvlei: -31° 35' 2.997", 19° 4' 21" (Figure 17.2).

Figure 17.1 Brakwater in the Oorlogskloof Nature Reserve, Oorlogskloof River.

¹⁴ PES is D, followed by C in lower reaches (E40C-06492) and then B (E40D-06588) before becoming the Koebee River after confluence with Klein-Koebee.

Figure 17.2 Rietvlei on the Koebee River

The Koebee (Category B), the Oorlogskloof (Category B) and the Klein-Koebee (Category B) have been identified as FEPAs.

Oologskloof River sampling site at Brakwater: Located in Oorlogskloof Nature Reserve roughly 18 km south of Nieuwoudtville where the main access road into the reserve crosses the river at the Brakwater camp. Contact the reserve manager, Mr Wessel Pretorius <u>oorlogskloof@gmail.com</u> (027) 218 1010

Koebee River sampling site at Rietvlei: Take the unmarked turn-off 16 km outside Vanrhynsdorp. Follow the dirt road over the Koebee pass for 15 km. Turn north along the Koebee River for another 9 km crossing the river twice. Contact the Rietkuil Trust, Mr. JC van der Walt, <u>JC.vanderWalt@cobham.com</u> for the gate key and permission to enter the Rietkuil Trust property.

17.2.1 Hydrology

17.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to B Category.

17.2.1.2 Numerical

There is no gauging weir on the Koebee River. The Basic Ecological Reserve requirements (hydrology) for the quaternary are given in Appendix A, but there is currently no way of measuring the flow time-series.

The Koebee River is naturally seasonal, thus the minimum dry season lowflow is zero. However, the duration of no-flow conditions in the dry season is important in terms of implementation of the Ecological Reserve. Flow in NOVEMBER should NEVER drop below 0.001 m^3/s , and flow in April should NEVER drop below 0.003 m^3/s .

Mean flow in driest month (February): E40C: 0.01 m³/s E40D: 0.03 m³/s Even in extreme drought flow should not drop below: E40C: 0.001 m³/s E40D: 0.001 m³/s

17.2.2 Water quality

17.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

17.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits cannot be set with the current level of data available.

17.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

17.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

17.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

17.2.6 Fish

Source:	Paxton et al. (2002), Paxton unpublished data.
Applicable to:	E40C-06492 (lower reaches in Oorlogskloof) and E40D.
Monitor at:	Brakwater on the Oorlogskloof: -31° 27' 52.3368", 19° 4' 51.3192"
	Rietvlei on the Koebee: -31° 35' 2.997", 19° 4' 21".
Baseline data:	Paxton et al. (2002), Paxton unpublished data.

17.2.6.1 Narrative

At least three of the following four species should be represented in the catch: *Labeobarbus capensis*, *Barbus serra, Barbus anoplus* and *Labeo seeberi*.

17.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 17.1.

	Sub- component	RQOs	TPCs	
	Species assemblage	At least three of the following four species should be represented in the catch by >100 individuals: Labeobarbus capensis, Barbus serra, Labeo seeberi, Barbus anoplus		
Indigenous	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 70 mm TL for bass)	None available	
Indige	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch		
	Sub- component	RQOs		
Alien	Species assemblage	<i>Tilapia sparrmanii</i> should represent <5% of the catch		
	Demographics	Not relevant	None available	
	Fish Health	Parasites, lesions and deformities should be present on <5 % of the catch		

17.3 TRIBUTARIES

The Klein-Koebee (Category B) has been identified as a FEPA.

Detailed hydrological RQOs cannot be set for individual tributaries with the current level of data available.

17.3.1 Hydrology

Basic RQOs: Appendix A.

17.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category B in the Niewoudville River;
- Category B iin the Klein-Koebee.

17.3.1.2 Numerical

See Appendix A.

17.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements in E40D, are given in Table 17.2.

Table 17.2Groundwater Reserve Requirements for E40D

Quaternary	Recharge	Total Usage	EWR Low Flow	Groundwater Reserve	Water Balance	GW Stress Index	PS
	(hm³/a)	(hm³/a)	(hm³/a)	[% of Re]	(hm³/a)	Index	
E40D	3.09	0.00	1.00	32%	3.09	0%	А

17.5 WETLANDS IN E40C AND E32E (THE "NIEUWOUDTVILLE WETLANDS")

NOTE: The Nieuwoudtville wetlands are addressed as a single unit although they occur across two quaternary catchments, *viz*.: E40C and E32E.

Most of the wetlands in the region are located within quaternary catchments E32E and E40C. Over 3 000 hectares of wetland have been mapped here, with individual wetlands ranging in size from less than a hectare to 300 hectares. The wetland types present include a diverse range of valley bottom, flats (understood in this context to mean wetlands forming over shallow bedrock in low gradient areas where there is no unidirectional runoff), seep and depressional wetlands.

The vast majority of wetlands on the Plateau occur within Bokkeveld sandstone fynbos habitat type, which is dominated by Cape Table Mountain Group fractured sandstone and flanks the escarpment edge. This is an area that receives significantly higher rainfall than all other areas on the Plateau. The landscape here is a combination of shallow sandy soils over sandstone, with bedrock at the surface in many places, and areas of deeper sands in valleys, providing a mosaic of habitat types and wetness regimes. The area has a high density of small springs.

Valley bottom wetlands predominate along natural drainage lines in deep sands, often supported by springs, and are most commonly vegetated with *Pennisetum macrourum* but with many other grass, sedge, bulb and restio species represented. Several wetland plants are palatable within these areas and provide livestock with grazing. These wetlands also support several rare and endemic plant species.

The relatively flat landscape in areas has also favoured the formation of a high density of seasonal pans (depressions). These occur across widely varying geology / vegetation types throughout the Plateau, suggesting a wide-ranging set of hydrological and biodiversity habitat conditions. Some have sandstone bedrock or ferricrete (koffieklip) at the surface, others have clay / silt sediments while still others are located within deeper sands. They range from never vegetated, to seasonal support of plant species and permanently vegetated deeper sands. The seasonally wet areas support a diversity of bulb plant species, along with sedges and other herbaceous species. Some support plant species of conservation concern, such as *Sparaxis elegans*, and the floating aquatic *Oxalis disticha*, and many other rare and endemic plant species.

Key threats include:

- Over-grazing
- Cultivation of rooibos
- Lack of buffers, and thus a high risk of erosion

The valley bottom wetlands and flats wetlands are the most heavily impacted within this sub-catchment, while pans (depressional wetlands) are more likely to have a buffer or be embedded within natural vegetation.

17.5.1 Physical attributes

Source:	Job <i>et al.</i> (2011).
Applicable to:	E32E and E40C.
Monitor using:	Monitor changes in landuse and extent at 2 year intervals using Google Earth.
Baseline data:	Job (2011) and CapeNature, C.A.P.E fine scale map (2008) - the areas of wetlands
	and invasive woody vegetation are included in the deliverables of this study in .shp
	(ArcGIS) and .kml. (Google Earth) format.

In general the RQOs require that the wetlands should remain intact and the extent of invasion by woody alien plants should not increase.

The locations of priority wetlands in the Nieuwoudtville cluster (partially in E40C) are given in Table 17.3.

17.5.1.1 Narrative

There should be no expansion of agriculture or other landuses in to remaining intact wetland areas. There should also be no further encroachment of woody alien vegetation into wetland areas.

17.5.1.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 17.4 and Table 17.5.

Wetland Name	Wetland type	GPS (lat, long)	Quat
Biekos	Channelled Valley Bottom	-31.30420°, 19.058780°	E32E
Meulsteensvlei	Depression (pan)	-31.363917°, 19.031694°	E32E
Meulsteensvlei	Channelled Valley Bottom	-31.369417°, 19.024806°	E32E
Arendskraal	Hillslope Seep	-31.38432°,19.03904°	E40C
Klein Arendskraal	Hillslope Seep	-31.399440°, 19.042700°	E40C
Hantam	Depression (pan)	-31.382258°, 19.151340°	E40C
McGregor pan	Depression	-31.389660°, 19.144970°	E40C
Boschkloof	Channelled Valley Bottom	-31.665630°, 19.096590°	E40D
Papkuilsfontein	Hillslope Seep	-31.549990°, 19.161900°	E40D

 Table 17.3
 Locations of priority wetlands in the Nieuwoudtville cluster (partially in E40C)

Table 17.4	Wetland RQOs for Nieuwoudtville Wetlands cluster (partially in E40C)
------------	--

Sub-component	Baseline data source	RQO
Wetland extent	CapeNature fine	No expansion of agriculture or other landuses in to the remaining intact wetland areas
Woody alien vegetation extent	scale map (2008)	No further encroachment of woody alien vegetation into wetland areas
Wetland condition	Job et al. (2011)	No change in WET-Health scores (see Table 17.5)

Table 17.5	WET-Health scores for priority wetlands in the Nieuwoudtville cluster (partially in E40C)

Wetland Name	Watland type	Area (ba)	WET-Health scores			
Welland Name	Wetland type	Area (ha)	Hydrology	Geomorphology	Vegetation	
Biekos	Channelled Valley Bottom	10	С	В	С	
Meulsteensvlei	Depression (pan)	5	A	A	В	
Meulsteensvlei	Channelled Valley Bottom	50	В	A	С	
Arendskraal	Hillslope Seep	14	D	В	D	
Klein Arendskraal	Hillslope Seep	32	D	С	D	
Hantam	Depression (pan)	0.5	A	A	В	
McGregor pan	Depression	0.8	A	A	В	
Boschkloof	Channelled Valley Bottom	9.5	С	В	С	
Papkuilsfontein	Hillslope Seep	4	A	A	В	

18 E33F (Q1) RESOURCE QUALITY OBJECTIVES

18.1 UPDATED RESOURCE CLASSIFICATION

Quatorpary	Target Ecological Categories					
Quaternary	Mainstem		Key tributaries	Wetlands		
E33F	Troe troe	D	Droë and Langkloof	D	-	

18.2 TROE-TROE RIVER IN E33F

Key monitoring points for the Troe-troe River in E33F:

• E3H001 (Troe-troe River at Farm 256).

18.2.1 Hydrology

18.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to D Category.

18.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in December and April: 0.003 and 0.01 m³/s, respectively In extreme drought, December and April flow will be 0 m³/s.

18.2.2 Water quality

RQOs cannot be set with the current level of data available.

18.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

18.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

18.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

18.2.6 Fish

RQOs cannot be set with the current level of data available.

18.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

Groundwater Reserve Requirements for E33F

18.4 GROUNDWATER

Table 18.1

The area is dominated by the dolomitic Gifberg Formation aquifer, which is overlain by thin Alluvium layer. The fractured, folded TMG aquifers are found on the southern part of the catchment and constitute the high mountains. TMG aquifer contributes to baseflow by discharging as springs or by interaction with the rivers through the weathered zone.

The groundwater Reserve requirements for the whole quaternary catchment, based on the surface water low flow requirements, are given in Table 18.1.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E33F	15.87	14.50	0.05	0%	1.37	91%	E

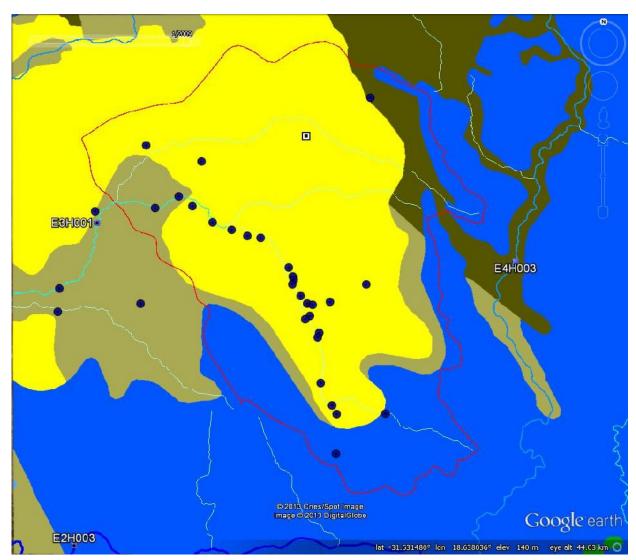


Figure 18.1 Map of E33F with aquifer delineation (blue: TMG Aquifer, yellow: Alluvium, light olive: Gifberg), existing monitoring points (blue: WMS boreholes) and proposed monitoring points (white squares)

Groundwater is extracted from the Gifberg aquifer in this quaternary catchment. Groundwater is subjected to over-abstraction in the area, which could have negative impacts on water availability and water quality. The intense agriculture poses an additional threat to the water quality of the area.

18.4.1 Water quantity

The setting of water quantity related RQOs (see Table 18.2) is aimed at ensuring sufficient yield for all users within the limits of the total available yield.

18.4.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

18.4.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 18.2.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Available Yield	Abstraction	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	n/a	Annual licence audit by DWA
	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Existing water level monitoring
		Water level recovers from abstraction impact during wet season.	n/a	network by DWA and Vanrhynsdorp WUA

 Table 18.2
 Water quantity RQOs for the Aquifers in E33F

18.4.2 Water quality

The setting of water quality related RQOs (see Table 18.3) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU. However, it is noted that it will not be possible to guarantee a constant supply of acceptable water quality, due to the general poor, natural water quality.

18.4.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

18.4.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 18.3. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring	
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Existing WMS	
	CI		< 300 mg/l	network by DWA	
Salts	EC	Fitness for use for domestic use after treatment, and shall not deteriorate from natural background	< 170 mS/m	and Vanrhynsdorp WUA	
	SO ₄		< 500 mg/l		
	E-coli		0 counts / 100 ml	Extension of WMS	
Pathogens	Total Coliform		10 counts / 100ml	network parameters required	

 Table 18.3
 Water quality RQOs for the Aquifers in E33F

18.5 WETLANDS

Not applicable (see Table 6.3).

19 E21H (A1) AND E21J (R38), E21K AND E21L (R37) RESOURCE QUALITY OBJECTIVES

19.1 UPDATED RESOURCE CLASSIFICATION

Queterner	Target Ecological Categories					
Quaternary	Mainstem		Key tributaries	Wetlands		
E21H A1	Twee B		Suurvlei, Middeldeur	В		
E21H	Leeu B B		Twee	В] -	
E21J	Groot B		Riet River between 33° 0'31.52"S; 19°29'59.08"E and 32°36'46.48"S; 19°27'10.74"E Remainder of Riet No name tributary Brandkraal River	A/B B A/B B	-	
E21L	Groot	В	Matjies River and No name tributary	B A/B	wetland area 1.7% of quaternary, 99% in AB (E21K)	

19.2 GROOT RIVER IN E21J AND E21L

Key monitoring points for the Groot River for E21J and E21L:

- E2H002 (Doring River @ Elands Drift (Aspoort) in E22G summer only).
- EWR Site 6 in E21J (2006; Figure 19.1; Box 19.1).

Figure 19.1 EWR 6 (2006) in E21J

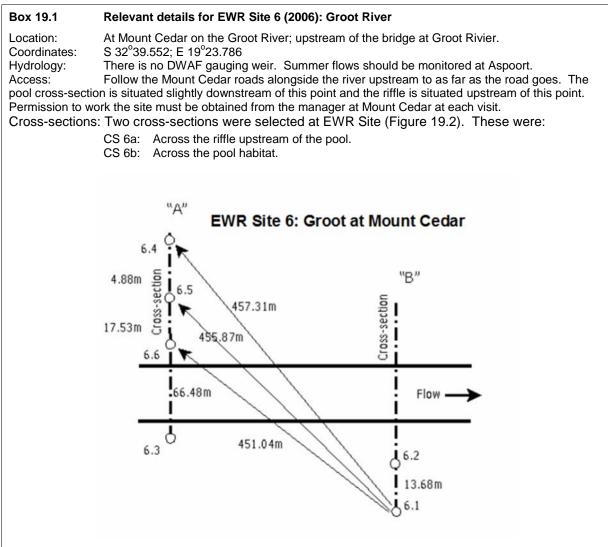


Figure 19.2 Plan layout for EWR Site 6.

Fixed stations were also installed at the site in November 2003. The elevations (above a local datum; Eald) of the fixed stations, the orientations of cross-sections relative to fixed stations and a description of the station type (steel peg in concrete or marked rock (MRK)) are given in Table 19.1.

Table 19.1	Elevations of fixed stations, orientations of cross-sections relative to fixed stations and
	descriptions of station type.

RIVer	EWR Site	Cross-section	Station		Horizontal angle from	45
	No.		Set-up	Orientation	orientation station to cross- section (dec. deg.)	Eald ¹⁵ (m)
		`	6.3(MRK)	6.4(MRK)	0.000	86.448
				6.5(MRK)	0.000	84.876
				6.6(MRK)	0.000	83.281
Groot	6			6.2(SPC)	0.000	
			6 1/MPK)	6.6	77.409	84.256
			0.1(IVIKK)	6.5	75.096	04.200
				6.4	74.512	

¹⁵ Elevation above local datum.

19.2.1 Hydrology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR 6 (2006) and E2H002 (Box 17.1) – summer only.
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E2H002.

19.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is equal to B Category.

19.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below, and the detail with respect to flood requirements is given in Table 19.2.

Mean flow in driest month (February):	
E21J: 0.06 m³/s	
E21L: 0.1 m ³ /s	
Even in extreme drought flow should not drop below:	
E21J: 0.001 m³/s	
E21L: 0.002 m³/s	
	-

Please note: The Reserve allocations upstream of this site DO NOT meet the second Class 4 flood (Table 19.2). This cannot be managed and may or may not come through from the surrounding catchment.

Flood type	Daily average	Duration	Volume	Number	Months	
Flood type	peak (m ³ /s)	(days)	(MCM) requested		WORTHS	
Intra-annual C	lass (i.e., each flood h	as a return per	riod of 1:1)			
Class 1	5.51	3	1.0	7 ¹	September-June	
Class 2	11.02	5	2.0	2	June - September	
Class 3	22.03	5	4.0	2	June - September	
Class 4	44.06	7	11.0	2	June - September	
Inter-annual C	lass (return period giv	en below)				
1:2	48.96	-	15.5	Present	Not stipulated	
1:5	66.26	-	29.5	Present	Not stipulated	
1:10	77.89	-	33.7	Present	Not stipulated	
1:20	162.55	-	43.2	Present	Not stipulated	

Table 19.2Summary of the flood requirements for E21J and E21L.

1 This is highlighting the perceived need for variability in flow in the Groot River.

19.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR 6 (2006) – with periodic field measurements (Box 19.1).
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS_pri_txt.asp (Olifants W).

19.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

19.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given in Table 19.3.

Ormanant	Malua		TDO
Component	Value	Monitor at	TPCs
Salts			
MgSO ₄ (mg ⁻¹)	<23		>23
Na ₂ SO ₄ (mg ⁻¹)	<33		>33
MgCl ₂ (mg ⁻¹)	<30	EWR Site 6	>30
CaCl ₂ (mg ⁻¹)	<57		>57
NaCl (mg ⁻¹)	<191		>191
Physical			
Water temperature (°C)	25-28 °C (November to January)		None available
рН	6.0 - 8.5	EWR Site 6	>7
EC (mS m ⁻¹)	<15	EWK Sile 0	>15
Dissolved oxygen (DO) (mg ⁻¹)	> 6.0		<6
Toxics			
Ammonia as NH_3 (mg ⁻¹)	<0.007	EWR Site 6	>0.007
Nutrients			
Nitrates as N (mg ⁻¹)	<0.050	EWR Site 6	>0.050
Phosphorus as PO ₄ -P (mg ⁻¹)	<0.020	EWR SILE 0	>0.020

19.2.3 Geomorphology

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR Site 6 (2006) - Box 19.1.
Baseline data:	DWAF (2005) – single data collection.

19.2.3.1 Narrative

The river channel structure and habitats should be in a minimum of a B-category. A riffle/run-pool sequence should be present at all flows. Sediment-size should be consistent with a Western Cape foothill river.

19.2.3.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 19.4.

Table 19.4	Geomorphological RQOs and TPCs for E21J and E21L at EWR6
------------	--

Component	Values: Cross-section A	Values: Cross-section B	TPCs
Dry season bed material com	position (mm)		
D ₁₆	13	38	> 20% increase or decrease
D ₅₀	64	80	> 20% increase or decrease
D ₈₄	360	120	> 30% increase or decrease
Channel geometry			
Dry season water surface slope (m/m)	0.004	0.0001	> 5% increase or decrease
Active channel width (m)	38	67	> 5% increase or decrease
Bankfull width (m)	44	74	> 5% increase or decrease
Key habitats			
Aquatic vegetation in and out of current	present throughout the year	present throughout the year	
Stones-in-current, including riffle and run	should be present and available for habitation by invertebrates	-	None available

19.2.4 Riparian vegetation

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR Site 6 (2006) - Box 19.1.
Baseline data:	DWAF (2005) – single data collection.

19.2.4.1 Narrative

The riparian vegetation should be intact and dominated by indigenous species. The presence of *Nerium oleander* must be controlled. There should be no other alien species present.

19.2.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 16.5.

Component	Species	RQO	TPcs
Aquatic Zone	Azolla filiculoides*	None present.	Present
Lower Wet Bank	Paspalum urvillei*	Low leaf density around edges of waterways during dry season.	
Lower Dynamic and Wet Bank	Phragmites australis	Narrow banding in Wet Bank only	
Wet Bank	Salix mucronata	Lining parts of rivers and streams exposed to annual winter high flows	None available
Tree-shrub, Back Dynamic	Brabejum stellatifolium	Present lining parts of rivers and streams exposed to annual winter high flows	
	Nerium oleander	Present but not dominant	
All zones	Acacia longifolia*, A. mearnsii*, A. melanoxylon*, Eucalyptus camaldulensis*	Not present.	Present

Table 19.5 Riparian vegetation RQOs and TPCs for E21J and E21L; * = exotic species.

19.2.5 Macroinvertebrates

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR Site 5 (2006) - Box 19.1.
Baseline data:	DWAF (2005) – single data collection.

19.2.5.1 Narrative

The macroinvertebrate community should be dominated by Ephemeroptera, Trichoptera.

19.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 19.6.

Component			P00
	Order	Таха	RQO
	Ephemeroptera	Leptophlebiidae	present in 90% of samples (cumulative for the site, taken over time)
		Heptageniidae	present in 80% of samples (cumulative for the site, taken over time)
Family presence/ absence	Trichoptera	Ecnomidae Leptoceridae Philopotamidae Sericostomatidae	at least three families of cased caddis present overall at site, with at least two of the listed families
	Megaloptera	Corydalidae	present in 40% of samples (cumulative for the site, taken over time)
	Coleoptera	-	at least three families
		Blephariceridae and	should remain present in low numbers until at least early
		Notonemouridae	summer (November / December) in most years
SASS results	SASS Score		>170
SASS results	ASPT		>7.5

Table 19.6	Macroinvertebrate RQOs for E21J and E21L (no TPCs available)

19.2.6 Fish

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
Applicable to:	E21J and E21L.
Monitor at:	EWR Site 6 (2006) - Box 19.1.
Baseline data: Gear:	DWAF (2005) – single data collection, Paxton (unpublished data), SAIAB database RQOs for the fish assemblages assume the use of a range of gears including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if present (5X2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

19.2.6.1 Narrative

At least one of the following three species should be present in the catch: *Labeobarbus capensis*, *Barbus serra* and *Labeo seeberi* should be present.

19.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 19.7.

Table 19.7	Fish RQOs for E21J and E21L (no TPCs available)

	Sub-component	RQOs
Indigenous	Species assemblage	At least one of the following three species should be present in the catch:
Ŭ.		Labeobarbus capensis, Barbus serra, Labeo seeberi
lige	Demographics	There is no recruitment of indigenous fish in the mainstem at E21J and E21L.
Inc	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch
	Sub-component	RQOs
	Species assemblage	> 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus)
	Species assemblage	< 90 % Lepomis macrochirus
		There should be at least two age classes present in each species. Approximately
Alien	Demographics	30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus</i> and <
		70 mm TL for bass).
Ali	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch

19.3 TRIBUTARIES

Detailed hydrological and biological RQOs cannot be set for the tributaries with the current level of data, except for fish for which there are some data available (Paxton, unpublished data). In general however, the RQOs for the Twee River require a halt to future development in the Twee River, so as to ensure that the Reserve for the **Twee River is sufficient to meet the Reserve EC of a B, plus provide a portion of the contribution of the Leeu River to the downstream rivers**, i.e., 14% MAR instead of 21% MAR.

Within E21H, the Middeldeur, Twee and Suurvlei tributaries have been identified as FEPAs, as well as some of the mainstem Leeu, after the confluence with the Twee. The FEPA status continues where the Leeu becomes the Groot and goes through E21J and E21L. Tributaries Brandkraal and an un-named one in E21J are FEPAs, as well as the Matjies and an un-named tributary in E21L.

Detailed RQOs cannot be set for the tributaries with the current level of data available.

19.3.1 Hydrology

19.3.1.1 Narrative

The ecological Reserve should be sufficient to maintain:

- Category B in the Middeldeur River;
- Category B in the Suurvlei River;
- Category B in the Twee River;
- Category D in the Leeu River;
- Category B in the Riet River between 33° 0'31.52"S; 19°29'59.08"E and 32°36'46.48"S; 19°27'10.74"E (confluence with the Groot River);
- Category B in the Brandkraal River;
- Category B in the Matjies River.

19.3.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month: Twee (March): 0.87 m³/s Brandkraals (February): unknown (c. 0.01 m³/s) Matjies (E21K; December and January): 0.03 m³/s Even in extreme drought flow should not drop below: Twee: 0.001 m³/s Brandkraals: 0.001 m³/s Matjies (E21K): 0.001 m³/s

Source: Applicable to: Monitor at:	Paxton (unpublished data), SAIAB database. E21J and E21L tributaries. Brandkraals River: RHP Site E2BRAN-VOGEL upstream of the road: 32°33'55.57"S,
	19°21'29.03"E; Twee River: River Node A1, 32°41'7.17"S, 19°16'44.36"E.
Baseline data:	Paxton (unpublished data), SAIAB database
Gear:	The RQOs for the fish assemblages assume the application a range of gear types including: small fyke nets (20-m wing length) in tributary pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

19.3.2 Fish

19.3.2.1 Narrative

At least one of *Labeobarbus capensis*, *Barbus calidus*, *Pseudobarbus phlegethon*, *Barbus serra*, *Labeo seeberi* should be present.

19.3.2.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 19.8.

	Sub-component	RQOs
Indigenous	Species assemblage	At least one of the following five species should be present in the catch: <i>Labeobarbus capensis</i> , <i>Barbus calidus</i> , <i>Pseudobarbus phlegethon</i> , <i>Barbus serra</i> , <i>Labeo seeberi</i>
	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 40 mm FL for small cyprinids; < 70 mm TL for large cyprinids).
Inc	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch
	Sub-component	RQOs
ue	Species assemblage	There should be no alien fish species present in the tributaries
	Demographics	No alien fish present
Alien	Fish Health	No alien fish present

 Table 19.8
 Fish RQOs for the Brandkraals (E21J) and Twee (E21H (A1)) (no TPCs available)

19.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 19.9.

Table 19.9	Groundwater Reserve Requirements for E21J and E21L.
------------	---

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E21J	16.07	0.20	0.32	2%	15.87	1%	А
E21K	11.62	0.10	0.18	2%	11.52	1%	А
E21L	2.53	0.05	0.14	6%	2.48	2%	А

19.5 WETLANDS

Not applicable (see Table 6.3).

20 E21G (R41) RESOURCE QUALITY OBJECTIVES

20.1 UPDATED RESOURCE CLASSIFICATION

Quaternary			Target Ecological Categories			
	Mainstem		Key tributaries		Wetlands	
	E21G	Leeu D		Lang	D	-

20.2 LEEU RIVER IN E21G

Key monitoring points for the Leeu River in E21H:

• E2H007 in E21G (Leeu River at Leeuw River).

20.2.1 Hydrology

Source:	CAPE Ecological Reserve Implementation Project (Southern Waters 2009).
Applicable to:	E21G.
Monitor at:	E2H007.
Baseline data:	http://www.dwa.gov.za/Hydrology/HyDataSets.aspx?Station=E2H007.

20.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is to D Category.

20.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (February): 0.07 m³/s Even in extreme drought flow should not drop below: 0.001 m³/s.

20.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
RQOs:	Table 20.1.
Applicable to:	E21G.
Monitor at:	E2H007 – with periodic field measurements.
Baseline data:	www.dwaf.gov.za/iwqs/wms/data/WMS_pri_txt.asp (Olifants W).

20.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a) and the Fitness for use -Class I for agricultural use (DWA 1996b).

20.2.2.2 Numerical

The numerical limits can be found in DWAF (1996a) and (1996b). Additional numerical limits to achieve the above narrative RQOs are given below.

Component	Value	Monitor at	
Salts			
MgSO ₄ (mg ⁻¹)	<23		
Na ₂ SO ₄ (mg ⁻¹)	<33		
MgCl ₂ (mg ⁻¹)	<30	E2H007	
CaCl ₂ (mg ⁻¹)	<57		
NaCI (mg ⁻¹)	<191		
Physical			
Water temperature (°C)	25-28 °C (November to January)		
pH	6.0 - 8.5	Periodic measurements at	
EC (mS m ⁻¹)	<15	E2H007	
Dissolved oxygen (DO) (mg ⁻¹)	> 6.0		
Toxics			
Ammonia as NH_3 (mg ⁻¹)	<0.007	E2H007	
Nutrients			
Nitrates as N (mg ⁻¹)	<0.050	E2H007	
Phosphorus as PO ₄ -P (mg ⁻¹)	<0.020		

Table 20.1Water quality RQOs for E21G (no TPCs available)

20.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

20.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

20.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

20.2.6 Fish

Source: RQOs:	Paxton (unpublished data), SAIAB database. Table 20.2.
Applicable to:	E21G.
Monitor at:	E2H007, River Node R41.
Baseline data:	Paxton (unpublished data), SAIAB database
Gear:	The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

20.2.6.1 Narrative

At least one of the following two species should be present in the catch: Labeobarbus capensis, Galaxias zebratus.

20.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given below.

	Sub- component	RQOs	TPCs		
	Species assemblage	At least one of the following two species should be present in the catch: Labeobarbus capensis, Galaxias zebratus			
snoue	Demographics	There is no recruitment of indigenous fish in the mainstem at E21G.	None available		
Indigenous	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch			
	Sub- component	RQOs			
Alien	Species assemblage	 > 5 % bass (Micropterus dolomieu or M. salmoides or M. punctulatus) < 90 % Lepomis macrochirus 			
	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL for <i>L. macrochirus</i> and < 70 mm TL for bass).	None available		
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch			

Table 20.2 Fish RQOs and TPCs for E2	21 G
--------------------------------------	-------------

20.3 TRIBUTARIES

Detailed hydrological and biological RQOs cannot be set for the tributaries with the current level of data. The RQOs for the Twee River (Section 19.3) require a halt to future development in the Twee River, so as to ensure that the Reserve for the Twee River is sufficient to meet the Reserve EC of a B, plus provide a portion of the contribution of the Leeu River to the downstream rivers, i.e., 14% MAR instead of 21% MAR.

20.4 GROUNDWATER – OVERVIEW

The area is primarily dominated by Bokkeveld Group (south-east), with fractured, folded TMG aquifers (Peninsula and Nardouw aquifers) and thick Quaternary alluvium aquifer which occurs along the Olifants River course with the Bokkeveld Group (north-west). The thick alluvium deposits can be considered an extension of the river system storing surplus water from flood events and releasing the water back into the river during low flow conditions.

The groundwater Reserve requirements for E21G, based on the surface water low flow requirements, are given in Table 20.3.

	1	· _ ·		-			1
	Recharge	Total	EWR Low	Groundwater	Water	GW	
Quaternary	Recharge	Usage	Flow	Reserve	Balance	Stress	PS
	(hm ³ /a)	(hm ^³ /a)	(hm ^³ /a)	[% of Re]	(hm ³ /a)	Index	
E21G	18.95	4.00	2.07	11%	14.95	21%	С

 Table 20.3
 Groundwater Reserve Requirements for E21G

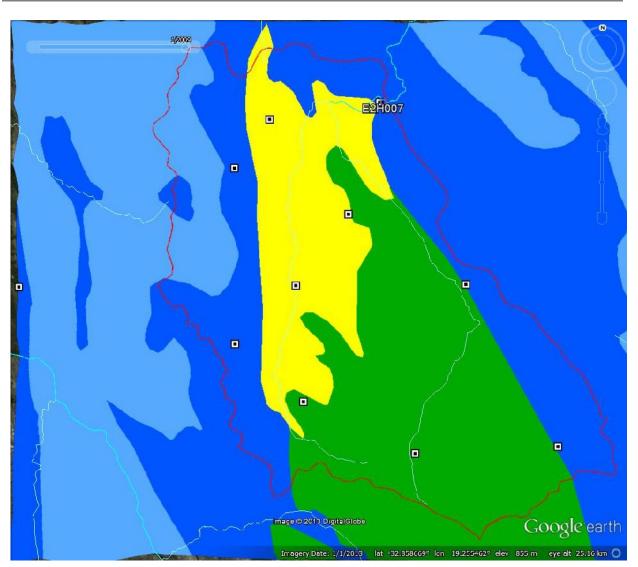


Figure 20.1 Map of RU41 with aquifer delineation (light and dark blue: TMG Aquifer, yellow: Alluvium, green: Bokkeveld), existing monitoring points (none) and proposed monitoring points (white squares)

20.5 ALLUVIUM AND BOKKEVELD AQUIFER

Groundwater is heavily used in the area, especially during the dry season and peak demand period. Intense agriculture, irrigation and over-abstraction can result in degradation in water quality. Residential areas could also have an impact on water quality.

20.5.1 Water quantity

The setting of water quantity related RQOs (see Table 20.4) is aimed at maintaining or improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

20.5.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

20.5.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 20.4.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
	Abstraction	All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
Available Yield	Water level	No negative trend between peak drawdowns during dry seasons	n/a	Water level
	trend	Water level recovers from abstraction impact during wet season.	n/a	monitoring network
	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	required
Discharge	Buffer zones	Around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m	
	Low flow in river	Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.07 m ³ /s / 0.001 m ³ /s	E2H007

 Table 20.4
 Water quantity RQOs for the Alluvium and Bokkeveld Aquifer in RU41

20.5.2 Water quality

The setting of water quality related RQOs (see Table 20.5) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

20.5.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

20.5.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 20.5. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Extension of
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	WMS network required
Dethemene	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS network &
Pathogens	Total Coliform		10 counts / 100ml	parameters required

 Table 20.5
 Water quality RQOs for the Alluvium and Bokkeveld Aquifer in RU41

20.6 TMG AQUIFERS

Groundwater from the TMG aquifers is used only in small portions of the catchment due to the accessibility. Intense agriculture, irrigation and over-abstraction can result in degradation in water quality. Residential areas could also have an impact on water quality.

20.6.1 Water quantity

The setting of water quantity related RQOs (see Table 20.6) is aimed at maintaining the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

20.6.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

20.6.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 20.6.

Table 20.6 Water quantity RQOs for the TMG Aquifer in RL
--

Sub-	Indicator	RQO Description	Numerical	Monitoring
component			Value	
Available Yield V	Abstraction	All users comply with the allocation schedule and individual licence conditions	n/a	Annual licence audit by DWA
	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Water level
		Water level recovers from abstraction impact during wet season.	n/a	monitoring network required

20.6.2 Water quality

The setting of water quality related RQOs (see Table 20.7) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

20.6.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

20.6.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 20.7.

Table 20.7Water quality RQOs for the TMG Aquifer in RU41

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Extension of
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	WMS network required
Pathogens	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS network &
	Total Coliform		10 counts / 100ml	parameters required

20.7 WETLANDS

Not applicable (see Table 6.3).

21 E23K (R27) RESOURCE QUALITY OBJECTIVES

21.1 UPDATED RESOURCE CLASSIFICATION

Quatarpary	Target Ecological Categories						
Quaternary	Mainstem		Key tributaries		Wetlands		
E23K	Tankwa	В	Pakhuislaagte, plus three no-name tributaries, southern one a FEPA	A/B	-		

21.2 TANKWA RIVER IN E23K

21.2.1 Hydrology

21.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is B Category.

21.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A.

The Tankwa River is ephemeral. Thus minimum lowflows do not apply.

21.2.2 Water quality

RQOs cannot be set with the current level of data available.

21.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

21.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

21.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

21.2.6 Fish

RQOs cannot be set with the current level of data available.

21.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available. An un-named tributary of the Tankwa in E23K has been identified as a FEPA.

21.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 21.1.

Report No.3 Final Report

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E23K	1.08	0.00	0.61	57%	1.08	0%	А

 Table 21.1
 Groundwater Reserve Requirements for E23K

21.5 WETLANDS

Not applicable (see Table 6.3).

22 E33E, E33D, E33C (R8) RESOURCE QUALITY OBJECTIVES

22.1 UPDATED RESOURCE CLASSIFICATION

Quaternary					
	Mainstem		Key tributaries		
E33C	Vars	С	Kraai and Grootdrif	С	wetland area 1.1% of quaternary, 92% in AB
E33D	Geelbek	С	Klein Riet (part FEPA), Nabeeb (FEPA) and four others (two are FEPA)	С	-
E33E	Hol (and Sout)	С	Geelbek, Rooiberg (part FEPA), Volstruisleegte, Moedverloor	С	wetland area 1% of quaternary, 99% in AB

22.2 HOL RIVER (B) IN E33E

22.2.1 Hydrology

22.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is C Category.

22.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A.

The Hol River is ephemeral. Thus minimum lowflows do not apply.

22.2.2 Water quality

RQOs cannot be set with the current level of data available.

22.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

22.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

22.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

22.2.6 Fish

RQOs cannot be set with the current level of data available.

22.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

22.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 22.1.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
E33C	1.37	0.27	0.00	0%	1.10	20%	В
E33D	2.04	0.05	0.14	7%	1.99	2%	А
E33E	1.59	0.41	0.06	4%	1.18	26%	С

 Table 22.1
 Groundwater Reserve Requirements for RU8 (E33C, E33D and E33E)

22.5 WETLANDS

Not applicable (see Table 6.3).

23 E32E (R3) RESOURCE QUALITY OBJECTIVES

23.1 UPDATED RESOURCE CLASSIFICATION

Queternery					
Quaternary Mainstem			Key tributaries		Wetlands
E32E	Hantams and Doring (b) (FEPA)	В	Rondekop (part FEPA), Grasberg (FEPA), Soetfontein (FEPA), Bloukrans (FEPA)	В	wetland area 2.2% of quaternary, 48% in AB

23.2 DORING RIVER (B) IN E32E

23.2.1 Hydrology

23.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is B Category.

23.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A.

The Doring River in E32E is ephemeral. Thus minimum lowflows do not apply.

23.2.2 Water quality

RQOs cannot be set with the current level of data available.

23.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

23.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

23.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

23.2.6 Fish

RQOs cannot be set with the current level of data available.

23.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

23.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 23.1.

Quaternary	Recharge (hm3/a)	Total Usage (hm3/a)	EWR Low Flow (hm3/a)	Groundwater Reserve [% of Re]	Water Balance (hm3/a)	GW Stress Index	PS
E32E	3.86	0.70	0.36	9%	3.16	18%	В

 Table 23.1
 Groundwater Reserve Requirements for E32E

23.5 WETLANDS IN E32E AND E40C ("NIEUWOUDTVILLE WETLANDS")

NOTE: The Nieuwoudtville wetlands are addressed as a single unit although they occur across two quaternary catchments, *viz*.: E40C and E32E. Please refer to Section 17.5 for the RQOs for this cluster of wetlands.

24 G30D (R53) RESOURCE QUALITY OBJECTIVES

24.1 UPDATED RESOURCE CLASSIFICATION

Queternery			Target Ecological Categories			
Quaternary	Mainstem		Key tributaries		Wetlands	
G30D	Verlorevlei (part FEPA)	С	Krom Antonies, Hol (part FEPA) and one with no name	C	wetland area 0.8% of quaternary, 3% in AB	

24.2 VERLOREVLEI RIVER IN G30D

A Reserve (Rapid Level II) has been signed off by DWA for the rivers in G30D. RQOs are given at a lower level of detail than for those RUs specifically selected for surface water (see Table 6.3). See also Appendix A.

24.2.1 Hydrology

Source:	CAPE Olifants-Doorn Catchment Management Aagency Project (Ninham Shand 2009), Estuary Management Plan: Verlorenvlei (CSIR 2010) and Sandveld Preliminary Reserve Determinations (Southen Waters 2003).
Applicable to:	G30D.
Monitor at:	-32.61139, 18.77444 (top of the quaternary at Duikerfontein); G3H001 at Het Kruis.
Baseline data:	G3H001, Ninham Shand (2009) and Southern Waters (2003).

24.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is C Category.

24.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (March): 0.019 m³/s Even in extreme drought flow should not drop below: 0.001 m³/s.

24.2.2 Water quality

Source:	Comprehensive Reserve Determination Study (DWAF 2005).
RQOs:	The following are being monitored: pH, Conductivity (mS/I), suspended solids(mg/I),

- free and saline ammonia as N (mg/l), Nitrate as N (mg/l), Ortho-phosphate as P (mg/l), chemical oxygen demand as O_2 (mg/l), Sodium as Na (mg/l)
- Applicable to: G30D.
- Monitor at: -32.61139, 18.77444; G3H001.

Baseline data: G30H001, Ninham Shand (2009) and Southern Waters (2003).

Inflow water quality is currently being monitored (monthly) by DWA at:

- Kruismans River bridge;
- Kruismans Tributary roadbridge;
- Krom Antonies River at Twisniet Farm abstraction point;
- Hol River at Farm Kliphoek;
- Verlorenvlei River on Farm Shrik Van Rondom;

- Verlorenvlei River down stream of Redelinghuys; and
- Verlorenvlei River Grootdrif Farm.

24.2.2.1 Narrative

The water should be oligotrophic and should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a).

24.2.2.2 Numerical None.

24.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

24.2.4 Riparian vegetation

RQOs cannot be set with the current level of data available.

24.2.5 Macroinvertebrates

RQOs cannot be set with the current level of data available.

24.2.6 Fish

Source:	C.A.P.E., SAIAB database
Applicable to:	G30D, G30E (and tributaries)
Monitor at:	River node R53; 32°29'37.82"S, 18°33'44.75"E
Baseline data:	SAIAB database.

24.2.6.1 Narrative

Indigenous species should dominate and *Pseudobarbus burgi* (Verlorenvlei), *Galaxias zebratus* and *Sandelia capensis* should be present.

24.2.6.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 24.1.

	Sub- component	RQOs	TPCs
	Species assemblage	There should be 2 of the following fish species present in the catch: <i>Pseudobarbus burgi</i> (Verlorenvlei), <i>Galaxias zebratus</i> , <i>Sandelia capensis</i>	
Indigenous	Demographics	There should be at least 2 age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL).	None available
Indige	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
Alien	Species assemblage	The following species should represent < 10 % of the catch: bass (<i>Micropterus dolomieu</i> , <i>M.</i> <i>salmoides</i>), <i>Oreochromis mossambicus</i> , <i>Tilapia</i> <i>sparrmanii</i> , <i>Cyprinus carpio</i> , <i>Tinca tinca</i>	
A	Demographics	There should be at least 2 age classes present in each species. Approximately 30% of the catch should comprise juvenile fish.	None available
	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	

Table 24.1Fish RQOs and TPCs for G30D

24.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

24.4 GROUNDWATER

The aquifers in the quaternary catchment G30D comprise mainly the TMG aquifers (Peninsula and Piekenierskloof) on the southern part of the catchment and the alluvium aquifer. The alluvium aquifer represents a substantial water resource covering most part of the catchment. Groundwater flow is from east to west following the Verlorenvlei River draining to the Atlantic Ocean.

The main water use in the catchment is for irrigation, mainly relying on groundwater. Local overabstraction of groundwater has resulted in the resource being stressed, with low water levels and the available yield being reduced. Groundwater quality is also being under threat due to irrigation return flows and other diffuse and point source pollution.

The groundwater Reserve requirements for the whole catchment, based on the surface water low flow requirements, are given in Table 24.2.

Table 24.2Groundwater Reserve Requirements for G30D

Quaternary	Recharge	Total Usage	EWR Low Flow	Groundwater Reserve	Water Balance	GW Stress	PS
	(hm³/a)	(hm³/a)	(hm ³ /a)	[% of Re]	(hm³/a)	Index	
G30D	13.12	7.56	1.27	10%	5.56	58%	D

24.4.1 Water quantity

The setting of water quantity related RQOs (see Table 24.3) is aimed at maintaining or improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

24.4.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

24.4.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 24.3.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Available	Abstraction	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	n/a	Annual licence audit by DWA
Yield	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Existing water
		Water level recovers from abstraction impact during wet season.	n/a	level monitoring network by
Discharge	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	DWA
Discharge	Low flow in river	Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.14 m ³ /s / 0.04 m ³ /s	-

 Table 24.3
 Water quantity RQOs for the Aquifers in RU53

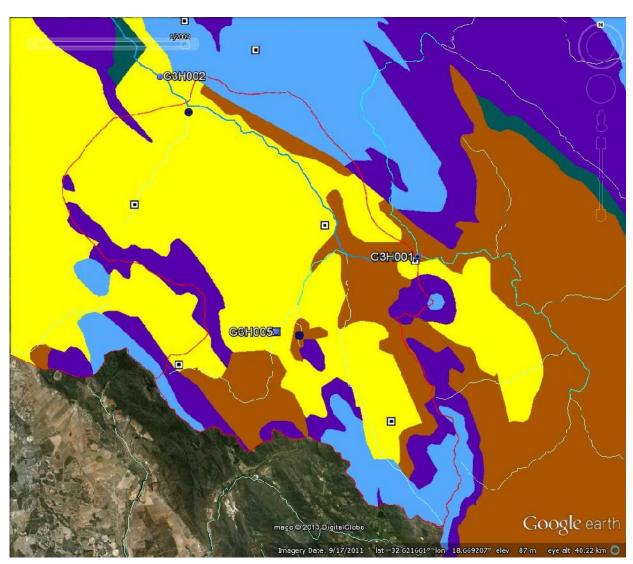


Figure 24.1 Map of RU53 with aquifer delineation (light blue and pink: TMG Aquifer, yellow: Alluvium), existing monitoring points (blue: WMS boreholes) and proposed monitoring points (white squares)

24.4.2 Water quality

The setting of water quality related RQOs (see Table 24.4) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

24.4.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

24.4.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 24.4. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Existing WMS
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	network by DWA
Dathagana	E-coli	treatment, and shall not deteriorate from	0 counts / 100 ml	Extension of WMS network parameters
Pathogens	Total Coliform	natural background	10 counts / 100ml	required

Table 24.4 Water quality RQOs for the Aquifers in RU53

24.5 WETLANDS

Not applicable (see Table 6.3), but refer to Section 25 for the vlei and estuary.

25 G30E (R52) RESOURCE QUALITY OBJECTIVES

25.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories					
Quaternary	Mainstem		Key tributaries		Wetlands	
G30E	Verlorevlei (RAMSAR)	В	Sandveld	(.	wetland area 7.9% of quaternary, 3% in AB	

25.2 VERLOREVLEI RIVER IN G30E

The bulk of G30E consists of Verlorenvlei Lake / Estuary and is discussed in Section 25.5. The river upstream (G30D) is discussed in Section 24.2. See also Appendix A.

25.2.1 Hydrology

Source:	CAPE Olifants-Doorn Catchment Management Aagency Project (Ninham Shand
	2009), Estuary Management Plan: Verlorenvlei (CSIR 2010) and Sandveld
	Preliminary Reserve Determinations (Southen Waters 2003).
Applicable to:	upper section of G30E.
Monitor at:	-32.46556; 18.51667; just upstream of Redelinghuys, somewhat between
	Redelinghuys wetland and Verlorenvlei proper.
Baseline data:	Ninham Shand (2009) and Southern Waters (2003).

25.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is B Category.

25.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (March): 0.29 m³/s Even in extreme drought flow should not drop below: 0.04 m³/s.

25.2.2 Water quality

RQOs cannot be set with the current level of data available.

25.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

25.2.4 Macroinvertebrates

RQOs cannot be set with the current level of data available.

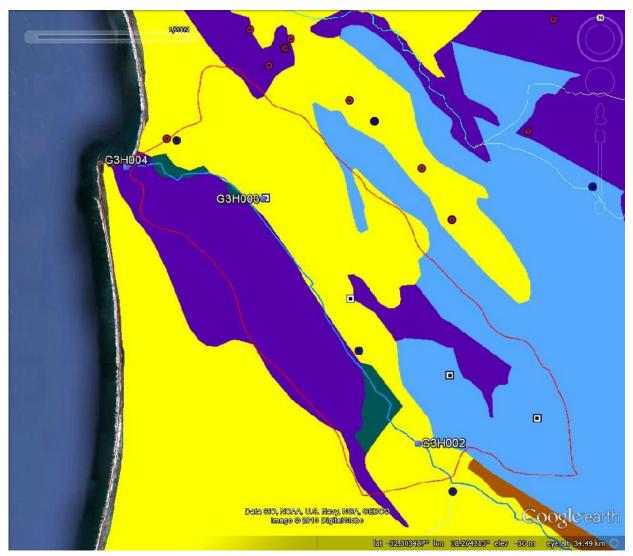
25.2.5 Fish

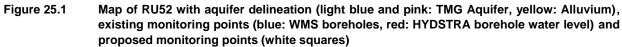
The RQOs for fish for the Verlorevlei River in G30E are the same as those for G30D.

25.2.5.1 Narrative

Indigenous species should dominate and *Pseudobarbus burgi* (Verlorenvlei), *Galaxias zebratus* and *Sandelia capensis* should be present.

25.2.5.2 Numerical


The suggested numerical limits to achieve the above narrative RQOs are given in Table 24.1.


25.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

25.4 GROUNDWATER

The quaternary catchment G30E is mainly made up of the TMG aquifer (Peninsula and Piekenierskloof) and alluvium aquifer (Figure 25.1). The alluvium aquifer represents a substantial water resource covering most part of the catchment. Groundwater flow is from east to west following the Verlorenvlei River connected to the Verlorenvlei wetland, which drains to the Atlantic Ocean.

The catchment consists of two small towns, Redelinghuys and the coastal town of Elands Bay. Groundwater is the only source of water for both towns. The Sandveld area is primarily an irrigation farming area where the main water resource is also groundwater. Over-abstraction in the area has resulted in the resource being heavily stressed, with low water levels and a reduction in the available yield for the supply to the residential areas. It is estimated that the groundwater abstraction currently exceeds the average annual recharge. Groundwater quality is also being depleted in close proximity to the ocean because of agricultural activities and abstraction for water supply. These considerably increase the risk of saline intrusion, which would render the water unusable.

The groundwater Reserve requirements for the whole catchment, based on the surface water low flow requirements, are given in Table 25.1.

Table 25.1Groundwater Reserve Requirements for G30E.

Quaternary	Recharge (hm3/a)	Total Usage (hm3/a)	EWR Low Flow (hm3/a)	Groundwater Reserve [% of Re]	Water Balance (hm3/a)	GW Stress Index	PS
G30E	4.56	7.53	0.60	13%	-2.97	165%	F

25.4.1 Water quantity

The setting of water quantity related RQOs (see Table 25.2) is aimed at improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

25.4.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

25.4.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 25.2.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Available Yield	Abstraction	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	n/a	Annual licence audit by DWA
	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Existing water
		Water level recovers from abstraction impact during wet season.	n/a	level monitoring network by
	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	DWA
Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	500m	WARMS registration, licensing
	Low flow in river	Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.29 m ³ /s / 0.04 m ³ /s	-

Table 25.2Water quantity RQOs for the Alluvium Aquifer in RU52

25.4.2 Water quality

The setting of water quality related RQOs (see Table 25.3) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

25.4.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

25.4.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 25.3. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Existing WMS
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	network by DWA
Pathogens	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS network
	Total Coliform		10 counts / 100ml	parameters required

Table 25.3Water quality RQOs for the Alluvium Aquifer in RU52

25.4.3 Water Level

The setting of water level related RQOs (see Table 25.4) is aimed at avoiding saline intrusion.

25.4.3.1 Narrative

No saline intrusion of seawater into the aquifer.

25.4.3.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 25.4.

Table 25.4Water Level RQOs for the Alluvium Aquifer in RU52

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Water Level	Water level	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	1 mamsl	Existing WMS network by DWA, plus local municipality's monitoring

25.5 VERLORENVLEI

The Verlorenvlei is a coastal lake with a short estuarine connection (about 2.5 km), situated about 25 km north of Lambert's Bay on the west coast and is a designated RAMSAR site (No. 525. Wetlands International Site Reference No. 1ZA009). It has an area of 1 500 ha (one of the largest lakes and one of the country's few coastal freshwater lakes).

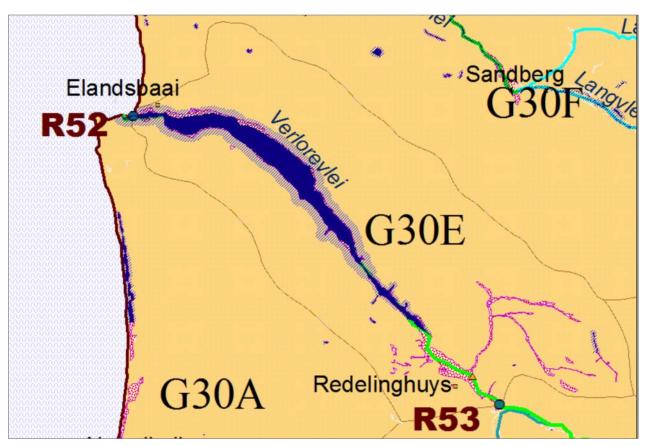


Figure 25.2. Spatial extent of Verloernvlei (dark blue area) as identified in CapeNature, C.A.P.E fine scale planning

25.5.1 Hydrology and hydrodynamics

Source:	CAPE Olifants-Doorn Catchment Management Agency Project (Ninham Shand
	2009), Estuary Management Plan: Verlorenvlei (CSIR 2010) and Sandveld
	Preliminary Reserve Determinations (Southen Waters 2003).
RQOs:	Table 25.5.
Applicable to:	G30E: Verlorenvlei Estuary.
Monitor at:	Verlorenvlei Estuary: the DWA surface water level recorder in Verlorenvlei, G3T001 at Bonteheuvel (ex G3R001).
Baseline data:	DWA permanent water level recorder, Ninham Shand (2009) and Southern Waters (2003).

25.5.1.1 Narrative

Flows shall be sufficient to maintain the vlei in an ecological condition that is C Category.

25.5.1.2 Numerical

The suggested numerical limits for water levels and mouth condition to achieve the above narrative RQOs are given Table 25.5.

Component	Requirement / motivation
Frequency and duration of	Twice in any single year (autumn, early winter and spring), or alternatively; and
opening	A single extended period from winter through into spring.
Mouth open conditions	"Semi-closed", i.e. continuous outflow with minimal seawater intrusion.
Water level (mouth open)	2.20 m AMSL
Water level (mouth closed)	1.95 m AMSL
Water level (Breaching)	unknown but less than 2.5 m AMSL

Table 25 5	Volume and water level BOOs for Varlerenvisi (C20E) for Category C (Ninham Shand 2000)
Table 25.5	Volume and water level RQOs for Verlorenvlei (G30E) for Category C (Ninham Shand 2009)

Note: There are no determinations of the volumes or distribution of water required for the maintenance of Verlorenvlei. In the absence of a Comprehensive Reserve assessment for the vlei, the suggested approach is to use the Reserve for the river at Redelinghuys (top of G30E, just before lake/wetland/estuary) with a target Ecological Condition of B, plus 60% of the floods from July to September: This would provide an allocation of 16.5 MCM (30.7% nMAR, and 3.2 MCM more than recommended by the Rapid Reserve determineation (Southern Waters 2003). In addition, if it is assumed that 60% of the large floods still come down the catchment, then the total volume allocated to the vlei is 26.3 MCM.

This approach necessitates limiting abstraction (in particular additional inchannel dams) in the upper catchment in order to protect Verlorenvlei, as indication are that the upper reaches of the Verlorenvlei River will not provide sufficient water to meet the Reserve at Redelinghuis.

It is important to note that the above approach will not be sufficient to protect water quality in the vlei without other catchment management interventions. Trophic state modelling showed that a volume of 13.3 MCM produced a negative water loading (Southern Waters 2003). Using the model, and assuming all inflow from the river, the acceptable breakeven annual volume was c. 25 MCM. Thus, if Verlorenvlei is to be protected, the Reserve allocation will need to go hand-in-hand with catchment management to reduce the nutrient loading in the river and vlei.

25.5.2 Water quality

DWA is not currently monitoring water quality downstream of Grootdrif Farm or in Verlorenvlei.

Source:	Estuary Management Plan: Verlorenvlei (CSIR 2010).		
Applicable to:	G30E: Verlorenvlei Estuary.		
Monitor at:	Verlorenvlei Estuary: the DWA permanent water level recorder in Verlorenvlei / G3R001.		
Baseline data:	Ninham Shand (2009) and Southern Waters (2003).		

25.5.2.1 Narrative

The water quality in the vlei shall not deteriorate from that measured prior to 2010.

25.5.2.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 25.6.

Component	RQO	TPCs
Salinity	Salinity concentrations in the estuary < 35 ppt Salinity concentrations in the Verlorenvlei < 10 ppt	
Dissolved Oxygen	Dissolved oxygen concentrations in Verlorenvlei >= 4 mg/l	
Turbidity	Average suspended solid concentrations in river inflow	
	should not increase by more than 10% of present conc's (to be determined)	None available
Inorganic nutrients	Average DIN concentrations in river inflow < 300 ug/l Average DIP concentrations in river inflow < 50 ug/l	
Toxins	Toxic substance concentrations (e.g. trace metals) in river inflow and the water column of Verlorenvlei < South African Water quality guidelines for coastal marine waters (DWAF 1995)	

Table 25.6Water quality RQOs and TPCs for Verlorenvlei estuary (G30E) (CSIR 2010)

25.5.3 Riparian vegetation

 Source:
 Estuary Management Plan: Verlorenvlei (CSIR 2010). Objectives from stakeholder workshops

 Applicable to:
 G30E: Verlorenvlei Estuary.

Monitor at: Verlorenvlei Estuary

25.5.3.1 Narrative

There should be no alien vegetation in Verlorenvlei.

25.5.3.2 *Numerical* None.

25.5.4 Macrophytes, micro- and macro-algae

Source:	Estuary Management Plan: Verlorenvlei (CSIR 2010).	
Applicable to:	G30E: Verlorenvlei Estuary.	
Monitor at:	Verlorenvlei Estuary: the DWA permanent water level recorder in Verlorenvlei.	
Baseline data:	Ninham Shand (2009) and Southern Waters (2003).	

25.5.4.1 Narrative

Macrophytes, micro- and macro-algae community structure should not deteriorate from that measured in 2009.

25.5.4.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 25.7.

Table 25.7	Macrophytes and algae RQOs and TPCs for Verlorenvlei estuary (G30E) (CSIR 2010)
------------	---

Component	RQO	TPCs
Phytoplankton	Maintain low phytoplankton biomass.	None available
Benthic microalgae	Maintain microalgal group diversity as measured for the baseline survey. Maintain high subtidal benthic microalgal biomass during the closed-mouth phase.	None available
	Maintain the distribution of plant community types.	None available
	Prevent excessive filamentous macroalgal growth.	Area covered >/=50 % of the open water surface area
Macrophytes	Ensure the long-term persistence of salt marsh species.	Decline in salt marsh species
	Prevent hypersaline sediment and groundwater	Sediment electrical conductivity >
	conditions in the salt marsh.	30 mS

25.5.5 Fish

Source:	Estuary Management Plan: Verlorenvlei (CSIR 2010).
Applicable to:	G30E: Verlorenvlei Estuary.
Monitor at:	Verlorenvlei Estuary: the DWA permanent water level recorder in Verlorenvlei.
Baseline data:	Ninham Shand (2009) and Southern Waters (2003).

25.5.5.1 Narrative

The population should be dominated by indigenous species.

25.5.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 25.8.

Component	RQO	TPCs
Fish assemblages	 Retain the following fish assemblages in the estuary (based on abundance): Estuarine species (10-20 %); Estuarine associated marine species (80-90 %); Indigenous freshwater species (1 %); 	 Level of estuarine species increases above 60 % of total abundance. Level of estuary associated marine species drops below 60 % of total abundance. Alien <i>Lepomis macrochirus</i> and <i>Micropterus spp.</i> dominate in the upper reaches.
Demographics	 All numerically dominant species are represented by 0+ juveniles. 	 Absence of 0+ juveniles of any of the dominant fish species.

 Table 25.8
 Fish RQOs for Verlorenvlei estuary / wetland in G30E (CSIR 2010).

25.5.6 Amphibians

Verlorenvlei provides habitat for the Cape dainty frog (*Cacosternum capense*), which is listed as Vulnerable by IUCN.

25.5.6.1 Narrative

The Cape dainty frog (Cacosternum capense) should continue to occur.

25.5.6.2 Numerical

None.

25.5.7 Birds

Source:	Estuary Management Plan: Verlorenvlei (CSIR 2010).	
Applicable to:	G30E: Verlorenvlei Estuary.	
Monitor at:	Verlorenvlei Estuary: CWAC counts are regularly undertaken at Verlorenvlei.	
Baseline data:	CWAC counts: Animal Demography Unit, University of Cape Town [XXWebsite].	
	Ninham Shand (2009) and Southern Waters (2003).	

25.5.7.1 Narrative

The abundance and diversity of birds in the estuary shall be equal to or greater than those measured prior to 2010.

25.5.7.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 25.9.

Component	RQO	TPCs
Birds	Retain representative presence and abundance of Red Data species (Greater Flamingoes, Little Bittern, Caspian Tern, Great White Pelican) Retain representative species richness including those uncommon in south-western Cape (Glossy Ibises, African Spoonbills, and those typical in this habitat (e.g White-backed Duck)	Waders or terns are absent from the estuary for five consecutive counts.

Table 25.9 Birds RQOs and TPCs for Verlorenvlei estuary / wetland in G30E (CSIR 2010)

26 G30F (R56) RESOURCE QUALITY OBJECTIVES

26.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories				
Quaternary	Mainstem		Key tributaries		Wetlands
G30F	Langvlei	С	Lambertshoek	C	wetland area 1.5% of quaternary, 5% in AB

26.2 LANGVLEI RIVER IN G30F

A Rapid Level II Reserve has been undertaken for the Langvlei River providing EWRs for the lower reach of the Langvlei River, for the Wadrif wetland and for the Wadrif Pan.

26.2.1 Hydrology

Source:	CAPE Olifants-Doorn Catchment Management Aagency Project (Ninham Shand 2009), Estuary Management Plan: Verlorenvlei (CSIR 2010) and Sandveld Proliminary Pagarya Determinations (Southan Waters 2002)
	Preliminary Reserve Determinations (Southen Waters 2003).
Applicable to:	G30F.
Monitor at:	-32.21050; 18.37825; Immediately downstream of Wadrif farm, and immediately upstream of the Wadrif Pan and wetland.
Baseline data:	Ninham Shand (2009) and Southern Waters (2003).

26.2.1.1 Narrative

Flows shall be sufficient to maintain the vlei in an ecological condition that is C Category.

26.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (March): 0.07 m³/s Even in extreme drought flow should not drop below: 0.001 m³/s.

26.2.2 Water quality

The water should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a).

26.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

26.2.4 Macroinvertebrates

RQOs cannot be set with the current level of data available.

26.2.5 Fish

Source:SAIAB databaseApplicable to:G30F

Monitor at: River Node R56: 32°12'40.05"S, 18°23'8.25"E / Upstream of the Wadrif Pan and Wetland

Baseline data: SAIAB database.

26.2.5.1 Narrative

Indigenous species should dominate and *Pseudobarbus burgi* (Verlorenvlei), *Galaxias zebratus* and *Sandelia capensis* should be present.

26.2.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 26.1.

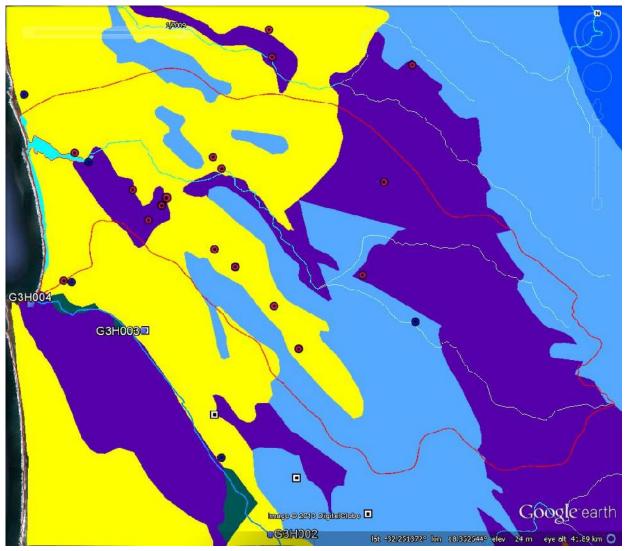
			•
	Sub- component	RQOs	TPCs
	Species assemblage	There should be 2 of the following fish species present in the catch: <i>Pseudobarbus burgi</i> (Verlorenvlei), <i>Galaxias zebratus</i> , <i>Sandelia capensis</i>	
Indigenous	Demographics	There should be at least two age classes present in each species. Approximately 30% of the catch should comprise juvenile fish (< 30 mm FL).	None available
Indige	Fish Health	Parasites, lesions and deformities should be present on < 5 % of the catch	
	Sub- component	RQOs	
Alien	Species assemblage	Insufficient data	None available
	Demographics	Alien species should be <10% of the catch.	INUTIE AVAIIADIE
	Fish Health	Insufficient data	

 Table 26.1
 Fish RQOs and TPCs for Langvlei River (G30F) (Ninham Shand. 2009)

26.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

26.4 GROUNDWATER


The Quaternary catchment G30F is mainly made up of the TMG aquifer (Peninsula and Piekenierskloof) and alluvium aquifer. Groundwater flow is from east to west following the Langvlei River draining to the Atlantic Ocean.

The catchment is mainly an irrigation farming area where the main water resource is groundwater. Over abstraction in the area has resulted in the resource being heavily stressed, with low water levels and the available yield being reduced. Groundwater quality is also being depleted due to agricultural activities and abstraction for water supply in close proximity to the ocean with the risk of saline intrusion.

The groundwater Reserve requirements for the whole catchment, based on the surface water low flow requirements, are given in Table 26.2.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
G30F	14.23	20.00	1.05	7%	-5.77	141%	F

 Table 26.2
 Groundwater Reserve Requirements for G30F

Groundwater is heavily used in the area, especially during the dry season and peak demand period, and it is currently estimated that the groundwater abstraction exceeds the average annual recharge.

Figure 26.1 Map of RU56 with aquifer delineation (light blue and pink: TMG Aquifer, yellow: Alluvium), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)

26.4.1 Water quantity

The setting of water quantity related RQOs (see Table 26.3) is aimed at improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

26.4.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

26.4.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 26.3.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Available Yield	Abstraction	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	n/a	Annual licence audit by DWA
	Water level trend	No negative trend between peak drawdowns during dry seasons	n/a	Existing water
		Water level recovers from abstraction impact during wet season.	n/a	level monitoring network by
Discharge	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	DWA
	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	500m	WARMS registration, licensing
	Low flow in river	Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.07 m ³ /s / 0.001 m ³ /s	-

Table 26.3	Water quantity RQOs for the Alluvium Aquifer in RU56
------------	--

26.4.2 Water quality

The setting of water quality related RQOs (see Table 26.4) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

26.4.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

26.4.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 26.4. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Existing WMS
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	network by DWA
Detheman	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS
Pathogens	Total Coliform		10 counts / 100ml	parameters required

Table 26.4Water quality RQOs for the Alluvium Aquifer in RU56

26.4.3 Water Level

The setting of water level related RQOs (see Table 26.5) is aimed at avoiding saline intrusion.

26.4.3.1 Narrative

No saline intrusion of seawater into the aquifer.

26.4.3.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 26.5.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Water Level	Water level	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	1 mamsl	Existing WMS network by DWA, plus local municipality's monitoring

Table 26.5 Water Level RQOs for the Alluvium Aquifer in RU56

26.5 WETLANDS – WADRIF WETLANDS AND WADRIF SALTPAN

The Wadrif Wetland is a small wetland at the point of discharge of the Langvlei River onto the coastal plain, immediately upstream of and grading into the Wadrif Pan. Category C was recommended for both.

26.5.1 Hydrology and hydrodynamics

Source:	CAPE Olifants-Doorn Catchment Management Agency Project (Ninham Shand
	2009), and Sandveld Preliminary Reserve Determinations (Southen Waters 2003).
Applicable to:	G30F: Wadrif Wetlands and Wadrif Pan.
Monitor at:	DWA permanent water level recorder G3H002 (Wadriftsoutpan); Wadrif Wetlands, -
	32.21325, 18.37721; and Wadrif Pan -32.20523, 18.33834.
Baseline data:	DWA permanent water level recorder, Ninham Shand (2009), Southern Waters
	(2003).

26.5.1.1 Narrative

Flows shall be sufficient to maintain the Wadrif wetlands and saltpan in an ecological condition that is equal to C Category.

26.5.1.2 Numerical

The suggested numerical limits for volumes and water levels required to achieve the above narrative RQOs are given in Table 26.6, Table 26.7 and Table 26.8.

Table 26.6 Annual Volume RQOs for Wadrif Wetland and Wadrif Pan (G30F) (Southern Waters 2003)

Component	Location	REC	RQO
Wadrif Wetland	-32.21325 18.37721	С	1.957 MCM
Wadris Pan	-32.20523 18.33834	С	5.000 MCM

Note: Integration of the Reserves for the Wadrif Pan, the Wadrif Wetland and the lower Langvlei River indicate that, even if the river Reserve is met (1.957 MCM per annum), surface flows will not support the requirements for the pan (5 MCM per annum; Table 26.7). Accordingly, while the C-Category Reserve for the river will go some way to offsetting the present level of devastation in the river and pan but it will not maintain a C category in the pan (Southern Waters 2003).

Component	RQO
Period of inundation	Perennial wetness to surface. Standing pools of water within the stands of palmiet
Depth	Not relevant. Wetland is essentially on a descending bend in the river, and should evidence groundwater discharge.
Downward seepage	Moderate to high
losses	
Groundwater	High, quantity undetermined
discharge	righ, quantity undetermined
Evaporation loss	Exacerbated by evapotranspiration
Contribution from groundwater	Significant
Volume requirement	Surface component will be met by EFR. However, a significant proportion of the EFR will be required from groundwater. Volume of the groundwater component has crucial and important implications for the Wadrif Pan.
Frequency for meeting requirement	Annually

Table 26.7	Aspects of the RQOs for Wadrif Wetland	(G30F)	(Southern Waters 2003)
	Aspects of the figos for Mauri Metiana	(0001)	

Table 26.8	Water level and inundation RQOs for Wadrif Pan (G30F) (Southern Waters 2003)

Component	RQO
Period of inundation	July to December, with water entering the system from April (standing water present for between six and eight months of the annual cycle).
Depth	Wet season maximum 1.5 m AMSL (1.0 m above lowest point of pan). This depth to be achieved during July to August. Wet season minimum. 0.8 m AMSL (provisional). Dry season maximum. 0.55 m AMSL (0.15 m above lowest point of pan during 1st week of December).
Downward seepage losses	Negligible (estimated <0.001 m/d)
Evaporation loss	1.2- 1.6 m/a
Contribution from groundwater	Undetermined
Volume requirement	5 MCM (wet year), 1.5-2.5 MCM dry year.
Frequency for meeting requirement	2/3 years (provisional)

26.5.2 Water quality

RQOs cannot be set for water quality with the current level of data available.

26.5.3 Vegetation

Genetically distinct vegetation assemblages are known to occur but RQOs cannot be set for vegetation with the current level of data available.

26.5.4 Fish

26.5.4.1 Narrative Galaxias zebratus and Sandelia capensis should be present.

26.5.4.2 Numerical

There are insufficient data to set numerical RQOs.

26.5.5 Birds

The Wadrif Wetland system is considered more important for birds than Verlorenvlei, in particular for the Southern Africa Pan-Coastal migrants (DWAF 2003).

Source:	DWAF 2003.
Applicable to:	G30F: Wadrif Wetland.
Monitor at:	Wadrif Wetland: Regular CWAC counts are undertaken.
Baseline data:	CWAC (Animal Demography Unit, University of Cape Town, WEB).

26.5.5.1 Narrative

The abundance and diversity of birds in the wetland shall be equal to or greater than those measured prior to 2010.

26.5.5.2 Numerical

The suggested numerical limits to achieve the above narrative RQOs are given in Table 26.9.

Table 26.9	Birds RQOs and TPCs for Wadrif Wetland in G30F (CSIR 2010)
------------	--

Component	RQO	TPCs
Birds	Retain representative presence of rare or threatened species (e.g. Lesser Flamingo) Retain representative species richness in particular of Southern Africa Pan-Coastal migrants	Waders or terns are absent from the estuary for five consecutive counts.

26.5.6 Wetland extent and vegetation

In general the RQOs require that the wetlands should remain intact and the extent of invasion by woody alien plants should not increase.

Source:	CapeNature, C.A.P.E fine scale map (2008), Job et al. (2011).
Applicable to:	G30F.
Monitor at:	Wadrif Wetland and Wadrif Pan.
Baseline data:	CapeNature, C.A.P.E fine scale map (2008), Job et al. (2011).
Monitor using:	Google Earth.

26.5.6.1 Narrative

Narrative RQOs for are provided in Table 26.10.

Table 26.10 Wetland RQOs for Wadrif Wetlands (G30F)

Sub-component	Baseline data source	RQO
Wetland extent	CapeNature, C.A.P.E fine scale map (2008)	No expansion of agriculture or other landuses into the remaining intact wetland areas
Woody alien vegetation extent		No further expansion of woody alien vegetation in to wetland areas
Wetland condition	Job et al. (2011)	No change in WET-Health scores

26.5.6.2 Numerical

None – insufficient data.

27 G30G (R57) RESOURCE QUALITY OBJECTIVES

27.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories				
Quaternary	Mainstem		Key tributaries		Wetlands
G30G	Jakkals / Jakkelsvlei	С	Peddies	('	wetland area 0.9% of quaternary, 11% in AB

27.2 JAKKALSVLEI RIVER IN G30G

A Rapid Level II Reserve has been undertaken for the River providing EWRs for the lower reach of the river and for the Jakkalsvlei pan.

27.2.1 Hydrology

Source:	CAPE Olifants-Doorn Catchment Management Agency Project (Ninham Shand
	2009), Sandveld Preliminary Reserve Determinations (Southen Waters 2003).
RQOs:	Appendix A.
Applicable to:	G30G: Jakkals River.
Monitor at:	Jakkals River at Kookfontein; -32.08942, 18.35242.
Baseline data:	Ninham Shand (2009), Southern Waters (2003).

27.2.1.1 Narrative

Flows shall be sufficient to maintain the river in an ecological condition that is C Category.

27.2.1.2 Numerical

The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Appendix A. Driest month lowflow and absolute minimum (drought) instantaneous dry season lowflows are stipulated below.

Mean flow in driest month (March): 0.03 m³/s Even in extreme drought flow should not drop below: 0.001 m³/s.

27.2.2 Water quality

The water should comply with the Target Water Quality Ranges for aquatic ecosystem (DWAF 1996a).

27.2.3 Geomorphology

RQOs cannot be set with the current level of data available.

27.2.4 Macroinvertebrates

RQOs cannot be set with the current level of data available.

27.2.5 Fish

RQOs cannot be set for fish with the current level of data available.

27.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

27.4 GROUNDWATER

The quaternary catchment G30G is mainly made up of the TMG aquifer (Peninsula and Piekenierskloof) and the alluvium aquifer. The alluvium aquifer represents a substantial water resource covering most part of the catchment. Groundwater flow is from east to west following the Jakkals River draining to the Atlantic Ocean.

The catchment comprises two small towns (Graafwater and Lamberts Bay) which are solely reliant on groundwater for their water supply. The area is primarily an irrigation farming area where the main water resource is groundwater. Over abstraction in the area has resulted in the resource being heavily stressed, with low water levels and the available yield for the supply to the residential areas being reduced. Groundwater quality is also being depleted due to agricultural activities and abstraction for water supply in close proximity to the ocean with the risk of saline intrusion.

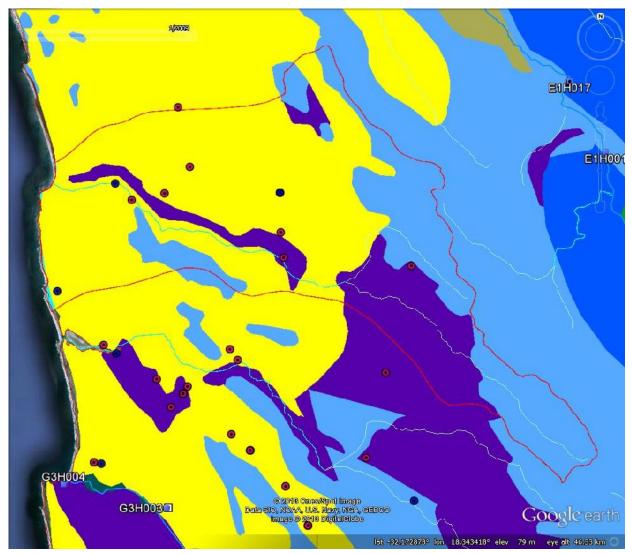


Figure 27.1 Map of RU57 with aquifer delineation (light blue and pink: TMG Aquifer, yellow: Alluvium), existing monitoring points (blue: WMS boreholes, red: HYDSTRA borehole water level) and proposed monitoring points (white squares)

The groundwater Reserve requirements for the whole catchment, based on the surface water low flow requirements, are given in Table 27.1.

Table 27.1	Groundwater Reserve Requirements for G30G

Quaternar	Recharge	Total Usage	EWR Low Flow	Groundwater Reserve	Water Balance	GW Stress	PS
	(hm³/a)	(hm³/a)	(hm ³ /a)	[% of Re]	(hm³/a)	Index	
G30G	10.48	6.74	0.41	4%	3.74	64%	D

Groundwater is heavily used in the area, especially during the dry season and peak demand period, and it is currently estimated that the groundwater abstraction is close to the average annual recharge.

27.4.1 Water quantity

The setting of water quantity related RQOs (see Table 27.2) is aimed at improving the groundwater discharge to support the low flow requirements and ensuring sufficient yield for all users.

27.4.1.1 Narrative

The groundwater use is sustainable for the environment and all users.

27.4.1.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 27.2.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Available Yield Discharge	Abstraction	All users comply with the revised allocation schedule and individual licence conditions within the confirmed available yield	n/a	Annual licence audit by DWA
	Water level	No negative trend between peak drawdowns during dry seasons	n/a	Existing water
	trend	Water level recovers from abstraction impact during wet season.	n/a	level monitoring network by
	Water level	Water level in the aquifer must be higher than the water level in the surface water.	n/a	DWA
	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	500m	WARMS registration, licensing
	Low flow in river	Compliance to the lowflow requirements in the river as per Reserve requirement (see above)	0.03 m ³ /s / 0.001 m ³ /s	-

Table 27.2 Water quantity RQOs for the Alluvium Aquifer in RU57

27.4.2 Water quality

The setting of water quality related RQOs (see Table 27.3) is aimed at maintaining the groundwater quality in relation to its background level, or ensuring compliance with water quality standards for domestic use (SANS 241: 2011) after treatment, as this is the more stringent requirement for the variety of users in the RU.

27.4.2.1 Narrative

The water quality shall not deteriorate from the natural background, and the water shall be fit for domestic use in accordance with SANS 241:2011, after treatment.

27.4.2.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 27.3. Exemption from these values can be granted, if exceeding is due to poor natural water quality.

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Nutrients	NO ₃ /NO ₂		< 11 mg/l	Existing WMS
Salts	EC	Fitness for use for domestic use after	< 170 mS/m	network by DWA
Pathogens	E-coli	treatment, and shall not deteriorate from natural background	0 counts / 100 ml	Extension of WMS
	Total Coliform		10 counts / 100ml	network parameters required

 Table 27.3
 Water quality RQOs for the Alluvium Aquifer in RU57

27.4.3 Water Level

The setting of water level related RQOs (see Table 27.4) is aimed at avoiding saline intrusion.

27.4.3.1 Narrative

No saline intrusion of seawater into the aquifer.

27.4.3.2 Numerical

The indicators and numerical limits to achieve the narrative statements are listed in Table 27.4.

Table 27.4	Water Level RQOs for the Alluvium Aquifer in RU57
------------	---

Sub- component	Indicator	RQO Description	Numerical Value	Monitoring
Water Level	Water level	Minimum water level in abstraction boreholes within 10km from the ocean to avoid saline intrusion	1 mamsl	Existing WMS network by DWA, plus local municipality's monitoring

27.5 WETLANDS - JAKKALSVLEI PAN

Source:	CAPE Olifants-Doorn Catchment Management Agency Project (Ninham Shand
	2009), Sandveld Preliminary Reserve Determinations (Southen Waters 2003).
Applicable to:	G30G: Jakkalsvlei Pan.
Monitor at:	Jakkalsvlei Pan, -32.08776, 18.32152.
Baseline data:	Ninham Shand (2009), Southern Waters (2003).

27.5.1 Narrative

Flows shall be sufficient to maintain the Jakkkalsvlei Pan in an ecological condition that is equal to a C Category.

27.5.2 Numerical

The suggested numerical limits for volume and depth requirements in Jakkalsvlei Pan to achieve the above narrative RQOs are given in Table 27.5.

Table 27.5Water level and inundation RQOs for Jakkalsvlei Pan (G30G) for a C category (Southern
Waters 2003).

Component	RQO
Period of inundation	July to November/December
Depth	1 m average depth
Volume at average depth	0.155 MCM
Surface area at average depth	25 ha
Downward seepage losses	Negligible (estimated <0.001 m/d)
Evaporation loss	1.2 m/a
Contribution from groundwater	Undetermined
Volume requirement	0.5 MCM
Frequency for meeting requirement	1 in 2 years (provisional)

28 G30H (Q5) RESOURCE QUALITY OBJECTIVES

28.1 UPDATED RESOURCE CLASSIFICATION

Queternery	Target Ecological Categories					
Quaternary	Mainstem		Key tributaries		Wetlands	
G30H	Sandlaagte	С	-	-	wetland area 1.4% of quaternary, 25% in AB	

28.2 SANDLAAGTE RIVER IN G30H

28.2.1 Hydrology

Not applicable (see Table 6.3). For basic RQOs - See Appendix A.

28.3 TRIBUTARIES

RQOs cannot be set for the tributaries with the current level of data available.

28.4 GROUNDWATER

No detailed RQOs have been set. The groundwater Reserve requirements, based on the surface water low flow requirements, are given in Table 28.1.

Table 28.1Groundwater Reserve Requirements for G30H.

Quaternary	Recharge (hm ³ /a)	Total Usage (hm ³ /a)	EWR Low Flow (hm ³ /a)	Groundwater Reserve [% of Re]	Water Balance (hm ³ /a)	GW Stress Index	PS
G30H	15.90	0.36	0.59	4%	15.54	2%	А

28.5 WETLANDS – UPPER SANDLAAGTE

The focus of the RQOs is on habitat extent (area of remaining intact wetlands) of wetlands within the cluster. There is no available information on wetland condition for individual wetlands within this cluster.

28.5.1 Hydrology

None - insufficient data.

28.5.2 Physical attributes

Source:	CapeNature, C.A.P.E fine scale map (2008).
RQOs:	Table 28.2.
Applicable to:	G30H.
Monitor using:	Google Earth.
Baseline data:	CapeNature, C.A.P.E fine scale map (2008) - the areas of wetlands are included in
	the deliverables of this study in .shp (ArcGIS) and .kml. (Google Earth) format.

28.5.2.1 Narrative

There should be no expansion of agriculture or other landuses in to remaining intact wetland areas.

28.5.2.2 Numerical

Numerical RQOs cannot be set with the current level of data available.

Table 28.2 Wetland RQOs for Sandlaagte Wetlands cluster (G30H)	
--	--

Wetland Indicator	Baseline data source	RQO	Monitoring frequency and approach
extent	CapeNature,	No expansion of agriculture	2 years intervals:
	C.A.P.E fine	or other landuses in to	Monitor changes in landuse and extent of wetland
	scale map	remaining intact wetland	areas from updated fine scale mapping or updated
	(2008)	areas	aerial/satellite imagery (such as Google Earth)

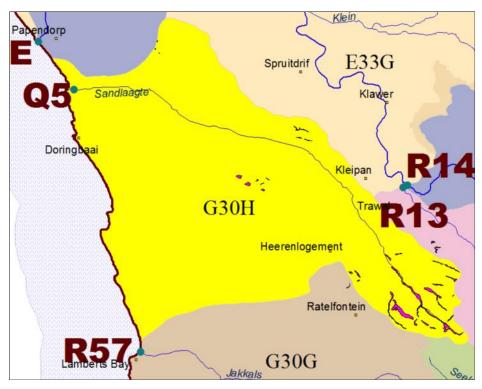


Figure 28.1 Location of Sandlaagte wetlands (denoted in pink on the yellow quaternary G30H).

Part IV: Monitoring methods

29 MONITORING METHODS FOR ESTUARIES

In the absence of more detailed information, and in an effort to retain some continuity between studies, the monitoring methods outlined here are those recommended by the specialists responsible for the Comprehensive Reserve determination (Taljaard *et al.* 2006).

29.1 OLIFANTS ESTUARY

Recommended monitoring actions from the Coomprehensive reserve study are provided in Table 29.1.

Component	Monitoring action	Timing	Location	
BIRDS	Undertake counts of all water associated birds. All birds should be identified to species level and total number of each counted.		Entire estuary	
FISH	Conduct fish surveys using both seine and gill nets as primary gear.		Entire estuary (10-15 stns)	
	Zooplankton: Collect quantitative samples using a flow meter <u>after dark</u> , preferably during neap tides (mid to high tide). Sampling to be done at mid- water level, i.e. not surface. (Include chlorophyll a measurements on benthic microalgae and water column chlorophyll a to establish feeding links)		Entire estuary (10-15 stns)	
INVERTEBRATES	Benthic invertebrates: Collect (subtidal) samples using a Zabalocki-type Eckman grab sampler with 5-9 randomly placed grabs (replicates) at each station. Collect intertidal samples at spring low tide using core sampling.		Entire estuary (10-15 stns)	
	Macrocrustaceans: Collected quantitative samples during neap tides (mid to high tide), at the same stations used for zooplankton, using a benthic sled with flow meter.	Summer and winter survey every 2 years	Entire estuary (10-15 stns)	
MACROPHYTES	Use aerial photographs to quantify area covered by different plant community types and produce a vegetation map. Conduct ground survey to: 1) verify areas covered by different plant community types, 2) check the spread of alien vegetation, 3) check the spread of aquatic weeds and algae in the upper estuarine reaches 4) check the extent of bareground in the floodplain salt marsh, depth to groundwater and groundwater salinity. 5) check the distribution of reeds, sedges and brackish salt marsh up the length of the estuary in relation to the longitudinal salinity gradient.		Entire estuary	
MICROALGAE	Phytoplankton: Conduct water column chlorophyll a measurements and counts of dominant phytoplankton group.		Entire estuary (8 stns)	
	Benthic microalgae: Conduct benthic chlorophyll a measurements		Entire estuary (8 stns)	

 Table 29.1
 Monitoring methods for Olifants Estuary RQOs

Report No.3 Final Report

Component	Monitoring action	Timing	Location
	Collect data on conductivity, temperature, suspended matter/turbidity, dissolved oxygen, pH, inorganic nutrients and organic content in river inflow	At least monthly	At Lutzville causeway
	Monitor inorganic nutrient inflow from agricultural return flow in upper reaches (e.g. bore hole sampling)		3-5 stns along upper banks
WATER QUALITY	Collected longitudinal salinity & temperature profiles (<i>in situ</i>) Water quality measurements taken along the length of the estuary (surface and bottom samples) for pH, dissolved oxygen, suspended solids/turbidity and inorganic nutrients.	To be measured when biotic surveys require information for interpretation	Entire estuar
	Baseline data set for pesticides/herbicides accumulation in sediments	Every 3 – 6 years	Focus on depositional areas
	Water level recordings	Hourly	Near mouth
HYDRODYNAMICS	Flow gauging	Daily	Near Lutzville causeway
	Aerial photographs of estuary (spring low tide)	Annual	
SEDIMENT DYNAMICS	Bathymetric survey: Series of cross- section profiles and a longitudinal profile collected at fixed 500 m intervals, but more detailed in the mouth (vertical accuracy better than 300 mm) Set sediment grab samples (at cross section profiles) for analysis of particle size distribution (PSD) and origin (i.e. using microscopic observations)	Every 3-6 years, depending on time scale of dominant sedimentation/erosion processes in estuary, as well as after flood events	Entire estuary
	Daily sampling of suspended sediment (and organic matter)	Daily	Sishen-Saldanha

29.2 VERLORENVLEI

The monitoring requirements and methods for Verlorenvlei are detailed in CSIR (2010).

29.3 OTHER SANDVELD ESTUARIES

Only hydrological RQOs. Monitoring as per recommendations in Sections 26 - 28.

30 MONITORING METHODS

30.1 RIVERS

In the absence of more detailed information, and in an effort to retain some continuity between studies, the monitoring methods outlined here are those recommended by the specialists responsible for the Comprehensive Reserve determination (Brown and Pemberton 2006). One exception to this is the fish, which has been updated according to information from Dr Bruce Paxton. The RQO monitoring will need to be integrated with other, in some cases on-going monitoring programmes. However, this level of integration and monitoring programme design is outside the ToR for this project. Additional information on analysis and interpretation is available in Brown and Pemberton (2006).

The RQOs that require monitoring at each priority site are listed in Table 8.2. Where available, site specific information on position of the monitoring is provided for each site in Sections 9 to 28.

30.1.1 Hydrology

Routine analysis of the daily hydrological data from the relevant weirs, listed for each node.

In addition, regular (daily/sub-daily) visual monitoring of flow in the dry season is essential at each and every site, as per the descriptive hydrological RQOs for that site.

30.1.2 Water Quality

In addition to the data collected from the DWA gauging weirs, the main issue with respect to water quality monitoring for the Olifants-Doorn WMA relates to the collection of high frequency data, eventdriven data collection - both what happens to the water quality during flows of particular magnitude, as well as what happens during the period that the river is drying up. Crucial data gaps for the rivers include data on the fundamental physicochemical parameters as the water starts to get shallower over the riffles (temperature and dissolved oxygen) and how the EC changes with changes in blending.

Based on the data that we have to hand, the water quality in the Olifants-Doring River appears to be good. However, no information is available for the critical periods when the flow-related monitoring stops, i.e., during extremely low flow events. Monitoring at these times would entail sample collection at locations remote from the DWA weirs. This would thus necessitate unattended loggers for temperature and salinity at various sites.

Ideally, such loggers should also be installed to monitor dissolved oxygen but the practicalities of collecting viable DO data are likely to mean that this could not be done outside of a controlled experimental arrangement that will ensure that the loggers are in the right place and correctly calibrated.

Finally, it is imperative that routine water quality data collection be resumed at all DWAF gauging weirs in the catchment. Specifically the following four stations:

- E1H013Q01 (Olifants River at Citrusdal).
- E1R001Q01 (Bulshoek Dam near wall).
- E1H007Q01 (Bulshoek Dam on Olifants River, left canal).
- E1H002Q01 (Doring River at Aspoort).

30.1.3 Geomorphology

Note: Pool sections to be more sensitive to change than the riffle sections. Pools are therefore likely to change more rapidly than riffles, so if necessary, focus monitoring on pools.

30.1.3.1 Short-term monitoring (every 2nd year)

- Update of the daily hydrological time series.
- Fixed-point photography.
- Interact with riparian vegetation specialist to assess the impacts of > bankfull flows.
- Any 10-year return period flood or greater, re-survey cross-section, re-rate the section, resurvey bed material distribution, fixed point photography, and if possible, do aerial photographic survey.

30.1.3.2 Long-term monitoring (every 5 to 10 years)

- Re-survey of fixed cross-sections.
- Analysis of aerial photographs (if available).
- Analyse satellite/digital photogrammetry if available.
- Re-survey of bed material distribution for original sections.

30.1.4 Riparian vegetation

Permanently marked plots should be established along the cross-sections at the relevant sites and density counts of shrubs within them should be done every second year.

- Vertical photographs should be taken of each marked plot. The photographs should be analysed for evidence of recruitment, changes in plant density, changes in species composition and plant development, with respect to the indicator plant species outlined in the Ecostatus table for each site.
- Lateral fixed-point photographs should be taken using a surveyor pole, and the height and composition of plants recorded.

In order to reduce time and financial costs, it is possible to restrict the transects to one side of the river, only.

30.1.5 Macroinvertebrates

Monitoring should take place twice a year, using the SASS method (Dickens and Graham 2002), in winter (between July and August) and summer (between mid-November and mid-December). Sampling should be undertaken separately in each of the following biotopes if they are present:

- Riffle.
- Run (may differentiate shallow, slow trickle run from deep/fast run).
- Stones out of current (slackwaters and backwaters).
- Emergent vegetation in current.
- Submerged vegetation.
- Vegetation out of current (usually emergent).
- Sand / gravel.

In addition, specimens of Trichoptera and Baetidae should be collected, preserved and identified in the laboratory. This additional requirement is to facilitate better understanding of possible shifts in ecosystem integrity as a result of a loss of species diversity.

30.1.6 Fish

The RQOs for the fish assemblages assume the application a range of gear types including: large fyke nets (40-m wing length) in mainstem pools, seine nets on sandy beaches if they are present (5 X 2 m). Electrofishing should be conducted in rocky riffles and runs. Relative abundances of target species and size classes will differ between gear types. Proportions should therefore be compared within catches of the same gear type.

Fyke nets are used to capture the larger adult cyprinids in order minimise damage and stress caused by the gill nets. The fyke is anchored in the water facing downstream by means of a line rigged from bank to bank and held afloat near the trap entrance by three buoys. The wings are held open by attaching a rope to the bank, and the centre wing (leader) was held in place by means of a weight. This net is set overnight for 15 hours (17h00 - 08h00) at each site and cleared in the morning.

Electrofishing is applied in shallow (<0.5 m) water. A portable backpack electrofisher should be used, powered by a 220 V generator.

30.2 WETLANDS

Monitor changes in landuse and extent at 2-year intervals using Google Earth.

30.3 GROUNDWATER

The monitoring methods outlined here are standard methods in groundwater studies.

30.3.1 Monitoring network

The RQOs that require monitoring at each priority site are listed in Table 8.6 and detailed in Sections 9 to 28. Where available, site specific information on position of the monitoring (existing and proposed) is provided for each site in Sections 9 to 28. A summary of required monitoring networks is provided in Table 30.1. It is envisaged that the water level and water quality monitoring networks are combined as far as possible to avoid unnecessary capital expenditure and monitoring costs.

30.3.2 Water use

As per the draft RQOs, all groundwater users within a specific RU must comply with the allocation schedule and individual licence conditions within the available yield. Hence, they have to record their groundwater abstraction on a regular basis, as stipulated in their individual licences. Depending upon the total volume, the frequency of readings should be daily or weekly. The data must be submitted to the DWA six-monthly.

30.3.3 Water level

Water level measurements are required for the regional monitoring network to identify regional trends and compliance, and for individual abstraction boreholes to verify compliance with licence conditions:

- Regional monitoring boreholes (see existing and proposed monitoring network) should be equipped with automatic water level sensors and data loggers, set for at least hourly readings. Downloading of these data loggers is required every 3 months. Manual water level measurements are required while downloading to calibrate and verify the logger data.
- Water level records from abstraction boreholes are required from users with at least daily readings; to be submitted to the DWA six-monthly together with the abstraction volume data.

Data analysis of these data is required six-monthly for

- Identifying trends of water level
- Identifying aquifer response to abstraction
- Identifying aquifer response to rainfall

RU	Quaternary Catchment	Aquifer	Water abstraction		Water level		Water quality			
			Exist	Proposed	Exist	Proposed	Exist	Proposed		
40	E10D	Alluvium	Unknown	Х	-	New	-	New		
		TMG	Unknown	Х	-	New	1	New		
33	E10E & E10F	Alluvium	Unknown	Х	-	New	-	New		
		TMG	Unknown	Х	1	New	3	New		
41	E21G	Bokkeveld	Unknown	Х	-	New	-	New		
		TMG	Unknown	Х	-	New	-	New		
	E33F	Gifberg	WUA	-	WUA	1	Х	1		
53	G30D	Sandveld	Х	Extend	-	New	Х	Extend		
52	G30E	Sandveld	Х	Extend	DWA	Extend	Х	Extend		
56	G30F	Sandveld	Х	Extend	DWA	-	Х	-		
57	G30G	Sandveld	Х	Extend	DWA	-	Х	-		

Table 30.1Existing and proposed monitoring networks for priority RUs

30.3.4 Water Quality

All monitoring and selected abstraction boreholes will need to be sampled quarterly in January, April, July and October each year in accordance with SANS ISO 5667, Part 11. Where possible, samples must be taken using a dedicated sampling pump or installed pumping equipment. Bailers are only to be used, if the borehole diameter is not sufficient for using a sampling pump. Field measurements of pH, EC and Temperature must be carried out during each sampling round.

The samples need to be analysed for

- Macro chemical analysis (Ca, Na, Mg, K, Alkalinity, Cl, SO₄, NO₂, NO₃, NH₄), quarterly
- Microbiological analysis (total coliforms, faecal coliforms, e coli), quarterly
- Micro and trace chemical analysis (Fe, Mn, trace metals, DOC, TOC), annually

Selected boreholes close to the sea or potential pollution sources should be equipped with an EC sensor and datalogger (combined with water level sensor above).

Part V: Confidence Assessment

31 CONFIDENCE ASSESSMENT

For the most part, confidence in the RQOs is directly related to the quality and quantity of data available for use in their determination. In the Olifants-Doorn WMA highlights that there are serious gaps with respect to useful data sets for river and estuary RQOs, while the information for the groundwater and wetland RQOs is even scarcer. Furthermore, the data that are available are spatially and temporally patchy and mostly old, particularly for non-hydrological RQOs in rivers and for groundwater and wetlands (e.g., data for Reserve determination studies, which are for 6 sites and were collected in 2004). This lack of reliable data impacts on the confidence in the RQO process at vitually ever level from the prioritisation of Resource Units, to the detail at which the RQOs can be presented. In some areas there are insufficient data to allow for the development of even low- RQOs.

The Classification and RQO projects in the Olifants / Doorn WMA are the first of their kind to be implemented in South Africa, and the Terms of Reference (and hence the proposal) for the RQO determination project assumed that the finalisation of the Classification Process would be concurrent with the start of the RQO project, so that the RQO project could link directly to the Classification Process' public participation activities, as well as have an opportunity to discuss the transfer of data between the two projects. It was also assumed that the basin configuration, Reserve allocations and other data provided by the Classification Process could be used without needing to do any significant reworking. However, the start of the RQO project was delayed and only commenced after the Classification Process had been completed, and the data required considerable checking and reworking. If anything, the data highlighted disparities in the scale between those required for determining the RQOs and those provided by past studies and monitoring activities in the WMA (see Sections 31.1.1, 31.1.2 and 31.1.3).

In general, therefore, the confidence in the RQO assessment is low. Additional explanations are provided below.

31.1.1 Rivers and estuaries

There were several issues related to the data available for the RQO project:

- The whole of the WMA, but particularly the Olifants-Doring catchment, suffers from a dearth of reliable hydrological and other biophysical data that can be used to determine of RQOs.
 - For the Olifants-Doring catchments:
 - there are only 10 functioning gauging wiers in a catchment of 46 625 km², and only two on the Olifants River itself (Table 31.1);
 - the Comprehensive Reserve determination study focused on only six river sites for the whole catchment;
 - the estuary Reserve determination was at an Intermediate level;
 - very few of the tributaries contributing to the incremental inflow of a quaternary are gauged, and as such it is difficult or impossible to disaggregate these flows into requiremets for individual tributaries.
 - For the Sandveld catchments:
 - there are only two functioning gauging wiers in Sandveld;
 - the river Reserve determinations were done at a Rapid 2 level;
 - none of the estuaries have a Reserve determination, although some data were available for water levels in Velorenvlei;

Table 31.1 DWA gauging Weirs in the Olifants-Doring catchment (from www.dwa.gov.za)

Station	Place	Catchment Area (km²)	Latitude	Longitude	Dates of record	Used for RQOs?	Reason
<u>E1H001</u>	Olifants River @ Langkloof	2659	32.0474	18.82328	1910-10-01 1937-09-30	NO	Record stops in 1937
<u>E1H002</u>	Tee River @ Thee Rivier	45	32.80014	19.0869	1938-02-01 1943-01-31	NO	Record stops in 1943
<u>E1H003</u>	Noordhoeks River @ Misgunst	68	32.72098	19.06606	1938-03-01 1943-02-28	NO	Record stops in 1943
<u>E1H004</u>	Boontjies River @ Allendale	61	32.63126	19.07023	1938-02-22 1943-01-31	NO	Record stops in 1943
<u>E1H005</u>	Olifants River @ Keerom	532	32.85292	19.08384	1938-01-01 1943-01-31	NO	Record stops in 1943
<u>E1H006</u>	Jan Dissels River @ Clanwilliam	160	32.21167	18.93667	1971-03-05 2013-02-27	Yes	Used
<u>E1H009</u>	Turbine-Outlet@(Right) @ Andriesgrond	n/a	32.18489	18.87439	1939-02-01 1991-10-01	NO	Record stops in 1939
<u>E1H011</u>	Olifants River @ Andriesgrond	2033	32.18489	18.87439	1935-05-29 1997-07-17	NO	Record stops in 1997
<u>E1H012</u>	Tributary Of@Noordhoeks River @ Misgunst	n/a	32.72098	19.06606	1938-07-06 1943-02-28	NO	Record stops in 1943
<u>E1H013</u>	Olifants River @ Citrusdal	880.8	32.59639	19.00833	1992-06-17 2012-11-13	Yes	Used
<u>E1H015</u>	Olifants River @ Rosendaal	n/a	33.12818	19.2344	1996-03-30 2002-08-19	NO	Record stops in 2002
<u>E1H016</u>	Olifants River @ Andriesgrond	n/a	32.18389	18.87389	2001-11-03 2013-02-27	Yes	Name change to E3H004
<u>E1H018</u>	Visgat @ Olifant river	n/a	33.08883	19.21878	2011-10-25 2013-02-27	Yes	Used
E2H001	Doring River @ Elands Drift	3774	32.54154	19.56858	1908-10-01 1924-03-31	NO	Record stops in 1924
E2H002	Doring River @ Elands Drift (Aspoort)	6903	32.50278	19.535	1923-03-12 2013-03-01	Yes	Used
<u>E2H003</u>	Doring River @ Melkboom	24044	31.8625	18.68639	1908-05-17 2013-02-28	Yes	Used
<u>E2H004</u>	Tankwa River @ Elandsvlei	6426	32.321	19.58691	1929-07-01 1948-04-30	NO	Record stops in 1948

Report No.3 Final Report

Station	Place	Catchment Area (km²)	Latitude	Longitude	Dates of record	Used for RQOs?	Reason
<u>E2H005</u>	Little Brak River @ Schoor Kraal	85	31.93213	19.75776	1928-08-01 1947-01-31	NO	Record stops in 1931
<u>E2H006</u>	Kruis River @ De Kruis	40	33.14874	19.37301	1929-08-02 1982-01-31	NO	Record stops in 1982
<u>E2H007</u>	Leeu River @ Leeuw River	265	32.78028	19.28333	1930-04-01 2013-02-27	Yes	Used
<u>E2H008</u>	Riet River @ De Naauwte	1178	32.86097	19.51608	1935-02-01 1970-08-02	NO	Record stops in 1970
<u>E2H010</u>	Kruis River @ Ebenezer	76	33.11528	19.3925	1982-10-25 2013-02-27	NO	Not at node
<u>E2H011</u>	Doring River @ Melkboom	24044	31.86046	18.68689	1948-07-23 1957-10-10	NO	Record stops in 1957
<u>E3H001</u>	Troe-Troe River @ Farm 256	746	31.62583	18.69472	1982-01-26 2013-02-28	Yes	Used
<u>E3H002</u>	Hantams River @ Brakke Rivier	1731	31.25878	19.47056	1990-04-14 2013-02-28	Yes	Used
<u>E3H004</u>	OLIFANTS RIVER @ LUTZVILLE	n/a	31.565	18.32778	2002-11-01 2008-06-18	Yes	Used

- The synthesised hydrology used in the Classification Process differed (in some cases considerably) from that used in the Reserve determination studies (c. 2004). Thus, the Reserve requirements needed to be recalculated. This entailed entering the information in the "IFREDIT" tool, and then using it in the "DESKTOP" model to create the .tab, .rul and .mrv files.
- The temporal scale (annual) of "Balance Sheet" tool used for Classification is too coarse to allow for consideration of seasonal variations in flows needed to meet Reserve allocations, particularly in the dry season, when pressures on the system are highest. Thus, the RQO projected needed to develop a monthly version of the "Balance sheet" tool.
- The monthly version of the "Balance Sheet" tool highlighted discrepancies between upstream and downstream sites that were not evident at an annual timestep, which meant that recommended catchment configuration from the Classification project had to be adjusted to take account of these, i.e., it needed to be "re-balanced".
- The Classification project incorporated the NFEPA information into the "Balance sheet" tool by, allocating an A/B category and 60% of the nMAR to each NFEPA. However, this approach considerably overestimated the volume of water that reaches the mainstem. This was because whole tributaries were designated NFEPAs although some of the lower sections run through intensely-cultivated farms, where the rivers are in poor condition. Realistically, the NFEPA designated reaches should stop short of the cultivated áreas, as it is unlikely and unrealistic that rivers through the farmlands will ever be returned to an A/B condition. It is equally unlikely that 60% of nMAR of these tributaries reaches the mainstem in the dry season or will do so in the near future. Thus, the RQO project had to adjust the boundaries of the NFEPAs where appropriate and recalculate the Reserve requirements for the lower portions of the NFEPA catchments.
 - Reserve data for the incremental inflows from tributaries were provided as lump sums of all tributaries in a quaternary catchment, even for areas (e.g., kouebkkeveld) where disaggregation data were available. Thus, the RQO project had to incorporate the available data, and adjust the "Balance Sheet" accordingly.
- The .tab and .rul files provided as part of Reserve determination studies and Classification do
 not provided information in a format that is easily monitored, even if there is a nearby gauging
 weir. Particularly since these were provided as MCM rather than m³s⁻¹. Thus, the RQO project
 needed to determine the mean dry season requirements, and set lowest absolute limits for flow
 (under any conditions) in priority rivers. Similarly, flood requirements also needed to be
 provided for those areas where they were available.

31.1.2 Groundwater

The Groundwater Reserve requirements are usually determined at quaternary scale, with only few studies available that are more site specific. However, RQOs must be determined on a finer spatial and temporal scale otherwises they are meaningless for the water resource managers as they cannot be implemented or monitored. Several issues of scale were identified:

- Groundwater PS and RC are usually determined on quaternary catchment scale and are not aquifer specific. However, different RQOs must be determined per relevant aquifer depending upon their contribution to the environmental water requirements of the surface water bodies. Data is usually not sufficient to provide RQOs on a borehole specific basis.
- A variety of regional and local groundwater studies were undertaken in the WMA within the last decade. However, only few of these studies focused on or at least addressed the surface water – groundwater interaction on an aquifer specific scale that is fine enough to use the data and information for developing site-specific RQOs.

Furthermore, gazetting of the Recommended Categories from the Classification Process was deemed unrealistic as they would have significant detrimental impacts on the current and future allocation of groundwater resources. For instance:

- The Present Status (PS), as defined by the aquifer stress (i.e. ratio of abstraction over recharge) and reported in the Classification Report, was questionable for a number of catchments and needed adjustments; e.g.
 - PS of A in E10E, Citrusdal and the farmers in the valley utilize groundwater to augment the water supply for domestic and agricultural use;
 - PS of A in E33F, Vanrhynsdorp and the farmers in the catchment utilize groundwater to augment the water supply for domestic and agricultural use;
 - PS of A in F60B, Bitterfontein and Nuwerus are supplied from the Southern Namaqualand Government Regional Water Supply Scheme (GRWSS), situated at the watershed between F60B and E33D.
- The Recommended Category (RC) for most catchments requires a decrease in abstraction, as it constitutes an improvement from the Present Status; e.g. from a PS of B to a RC of A. This would require a curtailment of current allocation and abstraction with significant impacts on the agricultural sector and domestic supply.
- The water supply for a number of towns depends upon the abstraction of groundwater, which is not taken into account in the assignment of the RC; e.g.
 - Citrusdal is in E10E, RC of A;
 - Wupperthal is in E24A / E24B, RC of A;
 - Calvinia is in E40B, change from PS of C to RC of B;
 - Vanrhynsdorp is in E33F, RC of A;
 - Bitterfontein and Rietpoort are in F60B and C, RC of A;
 - Piketberg is in G30B, RC of A (WARMS: groundwater use of 6.2 million m^3/a).
- The potential of future groundwater development within the WMA, as outlined in several previous reports (e.g. Olifants River Basin Study, WODRIS, Clanwilliam Dam Raising Study, All Towns Reconciliation Strategy Study), was not taken into account in determining the RC. The gazetting of the proposed RCs would foreclose these identified options for groundwater development and negate the strategic intent by the Department of promoting groundwater as future water supply option; e.g.
 - The WODRIS identified several possible target areas for groundwater development for agricultural use in the lower Olifants River Valley, situated along the Olifants River (i.e. E10K and E33G, H), the lower Doring River (i.e. E24L and M) and the Sandlaagte (i.e. G30H);
 - The Clanwilliam Dam Raising Study identified a number of possible target areas for groundwater development of the TMG aquifers along the Olifants River Valley from above Citrusdal (i.e. E10D) to the confluence with the Doring River (i.e. E10K);
 - Groundwater development was identified as a possible future augmentation option for most towns in the WMA during the All Towns Reconciliation Strategy Study.

Based on the issues above, it was agreed that no groundwater RC be determined and no groundwater RC be included in the gazetting document. Hoiwever, Resource Quality Objectives are usually defined in relation to a Recommended Category and not a Present Status. As such, certain assumptions about a desirable or acceptable status for the relevant aquifers in relation to the receiving environment and other users were required to determine meaningful and implementable RQOs.

31.1.3 Wetlands

Apart from one or two exceptions, data for use in deriving RQOs for wetlands in the Olifants-Doorn WMA is almost non-existent. Where available it is often limited to lines drawn on a map. It was unrealistic to try to define RQOs for each NFEPA wetland (which together total c. 25 000 ha), and even more so to expect that these could be monitored and enforced. Hence, summary RQOs could only be provided for wetlands of very high importance, and for areas that had received particular attention, such as Velorenvlei.

31.1.4 Expectations of DWA Regional Office

During the discussions with officials from the DWA Regional Office on the draft RQOs it became clear that they require strategies or action plans for enforcement and monitoring of RQOs, rather than just the RQOs themselves. While it was agreed that provision and design of strategies or action plans did not form part of the ToR for this project, every effort was made, within the limitations of the data, to provide RQOs that could be implemented relatively easily, and that acknowledged the limitations of the catchment in terms of hydrological gauges.

32 REFERENCES

- Anchor Environmental Consultants. 2008. Olifants estuary management plan Part 1: Situation assessment. Report to CapeNature and the CAPE estuary management programme. 79pp.
- Anchor Environmental Consultants. 2009. Olifants estuary management plan. Report to CapeNature and the CAPE estuary management programme. 26pp.
- Brown, C., Pemberton, C. and Magoba, R. 2006a. Olifants Doring Catchment Ecological Water Requirements Study. Final Summary Report. Project No. 2002-376. 55 pp.
- Brown, C., Pemberton, C., Birkhead, A., Bok, A., Boucher, C., Dollar, E., Harding, W., Kamish, W., King, J., Paxton, B. and Ractliffe, S. 2006b: In support of water-resource planning highlighting key management issues using DRIFT: A Case Study. Water SA 32 2, 181-191.
- Brown, C., Ewart-Smith, J., Conrad, J. and Rossouw, N. 2007: The development of the water resource classification system (WRCS). Volume 2. Ecological, hydrological and water quality guidelines for the 7-step classification procedure. CSIR Report No. CSIR/NRE/WR/ER/2006/0187B/C. Department of Water Affairs and Forestry, Pretoria, 136pp.
- Brown, C.A., van der Berg, E., Sparks, A. and Magoba, R.N. 2010. Options for meeting the Ecological Reserve for a raised Clanwilliam Dam. *Water SA* Vol 36 (4).
- CapeNature, 2008. C.A.P.E. Fine-Scale Biodiversity Planning Project. and http://bgis.sanbi.org/fsp/.
- CAPE (Cape Action for People and the Environment). 2009. Olifants-Doring River Ecological Reserve and Resource Protection Capacity Building and Training. Final report July 2009. Authored by Southern Waters. 67 pp.
- CSIR. 2010. Estuary Management Plan: Verlorenvlei (Version 1). Report prepared for the C.A.P.E. Estuaries Programme. CSIR Report CSIR/NRE/CO/ER/2010/0066/B. Stellenbosch.
- Dollar E. S. J., Nicolson C. R., Brown C. A., Turpie J. K., Joubert A. R., Turton A. R., Grobler D. F., Pienaar H. H., Ewart-Smith J. and Manyaka S. M. 2010. Development of the South African Water Resource Classification System (WRCS): a tool towards the sustainable, equitable and efficient use of water resources in a developing country. *Water Policy*, 12: 479–499
- Department of Economic Development and Tourism. 2005. Micro-Economic Development Strategy (MEDS) for the Western Cape.
- Department of Water Affairs. 2011. Procedures to Develop and Implement Resource Quality Objectives, Department of Water Affairs, South Africa.
- Department of Water Affairs 2012a. Final Project Report for the Classification of significant water resources in the Olifants-Doorn WMA, Department of Water Affairs, South Africa, Belcher A. and Grobler D. 2012.
- Department of Water Affairs 2012b. Integrated Socio-Economic and Ecological Specialist Report for the Classification of significant water resources in the Olifants-Doorn WMA, Department of Water Affairs, South Africa.
- Department of Water Affairs 2012c. Guideline for identifying levels of Resource Protection Measures for Inland Wetlands: Version 1.0. Joint Department of Water Affairs and Water Research Commission report, prepared by M. W. Rountree, B. Weston and J. Jay. Department of Water Affairs, Pretoria.
- Department of Water Affairs 2012d. DRAFT: Review and update of the 1999 Ecological Importance-Sensitivity and the Present Ecological Status (EIS/PES) of South African rivers including expansion to priority tributaries and wetlands according to quaternary catchment: Group 5 -Western Cape WMAs: Breede/Overberg, Berg, Gouritz and Olifants/Doorn. . Draft report prepared by Southern Waters for Department of Water Affairs.
- Department of Water Affairs and Forestry, 1996a. South African Water Quality Guidelines (first edition). Volume 7: Aquatic Ecosystems.
- Department of Water Affairs and Forestry, 1996b. South African Water Quality Guidelines (first edition). Volume 4: Agricultural Water Use: Irrigation

- Department of Water Affairs and Forestry, 1996c. South African Water Quality Guidelines (first edition). Volume 1: Domestic Use
- Department of Water Affairs and Forestry. 2000. Reconnaissance investigation into the development and utilisation of the Mountain Group artesian groundwater, using the E10 Catchment as a pilot study area: Final Report. Umvoto Africa cc and SRK Joint Venture.
- Department of Water Affairs and Forestry. 2003. Sandveld Preliminary (Rapid) Reserve Determinations – Langvlei, Jakkals and Verlorenvlei Rivers, Olifants-Doorn WMA G30. Prepared by GEOSS, Southern Waters, Coastec, Council for Geoscience, and University of Western Cape. DWAF Project Number 2002-227, May 2003
- Department of Water Affairs and Forestry. 2005a. Olifants/Doring catchment Ecological Water Requirements study: Riverine RDM Report: Volume 2 – Environmental Water Requirements. Southern Waters. 85 pp.
- Department of Water Affairs and Forestry. 2005b. Groundwater Reserve Determination Study for the Olifants/Doorn Catchment: Inception Report. Prepared by SRK. Report No. 348965.
- Department of Water Affairs and Forestry. 2005c. Olifants/Doorn Water Management Area: Internal Strategic Perspective. Prepared by Ninham Shand (Pty) Ltd in association with Jakoet and Associates, Umvoto Africa, FST and Tlou and Matji, on behalf of the Directorate: National Water Resource Planning. DWAF Report No P WMA 17/000/00/0305.
- Department of Water Affairs and Forestry. 2006a. Resource Directed Management of Water quality: Management Instruments. Volume 4.2: Guideline for Determining Resource Water quality Objectives (RWQOs), Allocatable Water quality and the Stress of the Water Resource. Edition 2. Water Resource Planning Systems Series, Sub-Series No. WQP 1.7.2. ISBN No. 0-621-36793-1. Pretoria, South Africa.
- Department of Water Affairs and Forestry. 2006b. Olifants/Doring catchment Ecological Water Requirements study: RDM Report on Estuarine Component. S. Taljaard & Key Specialists.
- Department of Water Affairs and Forestry. 2007. Development of the Water Resource Classification System (WRCS). By Chief Directorate: Resource Directed Measures
- Department of Water Affairs and Forestry. 2008. Methods for determining the Water quality component of the Ecological Reserve. Prepared by Scherman Consulting.
- Department of Water Affairs and Forestry, South Africa and Department for International Development, United Kingdom. 2008. *A Framework for Water Allocation in the Jan Dissels River Catchment*. Prepared by A Selby of Pegasys, in association with Ninham Shand (Pty) Ltd and Informage, as part of the Support to Compulsory Licensing in the Jan Dissels River Catchment, Western Cape.Dollar, E.S.J., Brown, C.A., Turpie, J.K., Joubert, A.R., Nicolson, C.R. and Manyaka, S. 2006: The development of the Water Resource Classification System (WRCS). Volume 1. Overview and 7-step classification procedure. CSIR Report No. CSIR/NRE/WR/ER /2006 /0187A /C. Department of Water Affairs and Forestry, Pretoria, 70pp.
- Department of Water Affairs and Forestry 2003. Sandveld Preliminary (Rapid) Reserve determinations: Langvlei, Jakkals and Verlorenvlei Rivers, Olifants-Doorn WMA. Volume 2: Specialist Reports, Chapter 9: Birds. DWAF Project Number: 2002-227, May 2003. (Authored by GEOSS, Southern Waters, Coastec, Council for Geoscience, University of the Western Cape, DWAF).
- Dickens, C.W.S. and Graham, P.M. 2002 The South African Scoring System (SASS) Version 5 Rapid Bioassessment Method for Rivers. African Journal of Aquatic Sciences. 27: 1-10.
- Hartnady, C. J. H., and Curot, S. 2002. In situ borehole laboratory for TMG fractured rock hydrotectonics research. Blikhuis Experimental Deep Drilling (BEDD) Project, Table Mountain Group (TMG).
- Holtzhausen L. 2006. Dam Project Could Improve Aquatic Environment. WaterWheel, Jan/Feb 2006. <www.wrc.org.za/downloads/waterwheel/jan-feb%2006/Clanwilliam%20p14-16.pdf> [Accessed: 04 November 2008].
- Job, N., Schumann M. and Kotze D. 2011. Mondi Wetlands Programme 2011 work plan: Nieuwoudtville Stewardship Farmers Project (Deliverable 1: Final baseline monitoring report for 10 wetlands,

with specific management recommendations developed in collaboration with land owners and Northern Cape Department of Environment and Nature Conservation). Mondi Wetlands Programme, Hilton, KZN.

- King J., Cambray J.A., Dean Impson N. 1998. Linked effects of dam-released floods and water temperature on spawning of the Clanwilliam yellowfish Barbus capensis. Hydrobiologia, Volume 384, Number 1-3, August 1998, pp. 245-265(21).
- Macfarlane, D.M., Kotze D.C., Ellery W.N., Walters D., Koopman V., Goodman P. and Goge M. 2008. WET-Health: A technique for rapidly assessing wetland health. WRC Report No. TT 340/08. Water Research Commission, Pretoria.
- Nel J.L., Belcher A., Impson N.D., Kotze I.M., Paxton B., Schonegevel L.Y. and Smith-Adao L.B. 2006. Conservation assessment of freshwater biodiversity in the Olifants/Doorn Water Management Area: Final report. CSIR Report Number CSIR/NRE/ECO/ER/2006/0182/C, CSIR, Stellenbosch.
- Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough L. and Nienaber, S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. K5/1801.
- Ninham Shand. 2006. Integrated Environmental Programme of the West Coast District. Report No. 4110/401286 (http://www.westcoastdm.co.za/documents.html)
- Ninham Shand. Feasibility study for the raising of Clanwilliam Dam. NS Reports no. 4414-4420,4422-4432 and 4455. Reports to DWAF.
- Ninham Shand. 2009. C.A.P.E. Olifants-Doorn Catchment Management Agency Project: Towards a Catchment Management Strategy Water Resource Protection Sub-strategy. Report No. 4896/402821. Authors: K. Shippey, C.A. Brown, J. Conrad & N.L. Holland.
- Parsons, R. 2004: Hydrocensus data in the E10 catchment. Unpublished data sets from Reserve determination project.
- Parsons, R. and Wentzel, J. 2005. Groundwater Resource Directed Measures: Assessment of the E10 Catchment, Pilot Study. Water Research Commission, Project No. K5/1427.
- Paxton, B.R.; Clark, B.M. and Brown, C.A. 2002. An assessment of the effects of habitat degradation and exotic fish species invasions on the distribution of three endemic cyprinids: Barbus capensis, Barbus serra and Labeo seeberi in the Olifants and Doring Rivers, Western Cape. *DWAF Report No. PB E000-00-1302.* Prepared for the Department of Water Affairs and Forestry and Department of Agriculture by Southern Waters Ecological Research and Consulting cc. 53 pp.
- Paxton, B.R. and King, J.M. 2009. The influence of hydraulics, hydrology and temperature on the distribution, habitat use and recruitment of threatened cyprinids in a Western Cape river, South Africa. WRC Report No. 1483/1/09. Water Research Commission, Pretoria. 170 pp.
- Paxton, B.R., Ramollo, P., Schumann, M. and Jordaan, J. In print. Biodiversity Management Plan-Species (BMP-s) for the Clanwilliam sandfish (Labeo seeberi). Prepared by CapeNature and Northern Cape Department of Nature And Environment Conservation (49 pp).
- Pietersen, K., and Parsons, R. (eds). 2002. A Synthesis of the Hydrogeology of the Table Mountain Group – Formation of a Research Strategy. Water Research Commission Report No. TT 158/01, 19-30.
- Provincial Government Western Cape; Department of Agriculture 2001. Riverine Ecosystems. Report Prepared by Southern Waters Ecological Research and Consulting cc as part of Contract No. 259 - 2000/2001: Western Cape Olifants/Doring River Irrigiation Study (WODRIS). PGWC report number...xx
- Silimela Development Services Consortium. 2007. West Coast District Regional Economic Development Strategy. Pdf Parts 1 to 3. (http://www.westcoastdm. co.za/documents.html) [Accessed: 04 Nov 2008].

- Southern Waters, 2003. Sandveld preliminary (Rapid) Reserve determinations: Langvlei, Jakkals and Verlorenvlei Rivers, Olifants-Doorn WMA G30. Surface Water Component: Final Report: Reserve specifications. Unpublished report to DWAF.
- Southern Waters. 2007. Raising Clanwilliam Dam Study: Evaluating the proposed releases from Clanwilliam Dam for compliance with the recommended Reserve scenario. Unpublished consultancy report to DWA and Ninham Shand.
- Southern Waters. 2009. Olifants-Doring River Ecological Reserve and Resource Protection Capacity Building and Training. Final Report. Cape Action for People and the Environment. 67 pp.
- Taljaard, S and other specialists. 2006. Olifants Doring Catchment Ecological Water Requirements Study: RDM Report on Estuarine Component. Final Report to DWA. RDM/E00/04/CON/0306. 123 pp.
- Turpie, J.K., Dollar, E.S.J. Goldin, J., Mullins, W., Mallory, S., Rossouw, N. and Joubert, A. 2006: Socioeconomic guidelines for the 7-step classification procedure. CSIR Report No. CSIR/NRE/WR/ER/2006/0187C/C. Department of Water Affairs and Forestry, Pretoria, 113pp.
- Urban-Econ. 2006. West Coast District Municipality Poverty Alleviation Strategy. Pdf Parts 1 to 4. [Online] (http://www.westcoastdm.co.za/documents.html) [Accessed: 04 Nov 2008].
- West Coast District 2008-2009 IDP Review1. [Online] (http://www.westcoastdm.co.za/ documents.html) [Accessed: 04 Nov 2008].
- Western Cape Provincial Development Council. 2005. The Agriculture and Agri-Business Sector of the Western Cape: A consensus on land reform, economic development, environment, food security, sustainable livelihoods and the desired intervention strategies. [Online] www.elsenburg.com/media/ PDC%20Agricultureib.pdf [Accessed: 04 Nov 2008].
- Woodford, D.J., Impson, N.D., Day, J.A. and Bills, I.R. 2005. The predatory impact of invasive alien smallmouth bass, Micropterus dolomieu (Teleostei: Centrarchidae), on indigenous fishes in a Cape Floristic Region mountain stream. Afr. J. Aquat. Sci. 30 (2) 167-173

Appendix A. BASIC HYDROLOGICAL RQOS (ECOLOGICAL RESERVE REQUIREMENTS) FOR QUATERNARIES IN THE OLIFANTS-DOORN WMA

SEE SEPARATE DOCUMENT

Appendix B. GROUNDWATER RESERVE REQUIREMENTS FOR QUATERNARIES IN THE OLIFANTS-DOORN WMA

SEE SEPARATE DOCUMENT

Appendix C. FINAL PRIORITISATION OF RESOURCE UNITS FOR THE DEVELOPMENT OF RQOS

SEE SEPARATE DOCUMENT